Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (28)

Advertisement

Research Article Free access | 10.1172/JCI112365

Load dependence of proximal tubular bicarbonate reabsorption in chronic metabolic alkalosis in the rat.

D A Maddox and F J Gennari

Find articles by Maddox, D. in: PubMed | Google Scholar

Find articles by Gennari, F. in: PubMed | Google Scholar

Published March 1, 1986 - More info

Published in Volume 77, Issue 3 on March 1, 1986
J Clin Invest. 1986;77(3):709–716. https://doi.org/10.1172/JCI112365.
© 1986 The American Society for Clinical Investigation
Published March 1, 1986 - Version history
View PDF
Abstract

Studies were undertaken in Munich-Wistar rats to determine whether maintenance of chronic metabolic alkalosis (CMA) is associated with an increase in proximal HCO3- reabsorption, or whether a reduction in glomerular filtration rate (GFR) is required to sustain the elevated plasma HCO3- concentration. Superficial single nephron glomerular filtration rate (SNGFR), and absolute proximal HCO-3 (APRHCO3) and water (APRH2O) reabsorption were measured 20 +/- 3 d after the induction of CMA in eight rats and the results compared with seven age-matched control animals. Plasma [HCO3-] was 39.1 +/- 1.8 mM in CMA rats compared with 26.0 +/- 0.4 mM in controls (P less than 0.001). In the CMA rats, SNGFR was 44.8 +/- 1.1 vs. 38.2 +/- 2.1 nl/min in controls (P less than 0.025). As a result, the single nephron filtered load of HCO3- (FLHCO3) increased from 1,147 +/- 61 pmol/min in control to 2,040 +/- 108 pmol/min in CMA (P less than 0.001). APRHCO3 increased by greater than 65%, from 970 +/- 65 pmol/min in control to 1,624 +/- 86 pmol/min in CMA (P less than 0.001). APRH2O increased from 18.4 +/- 1.6 nl/min in control to 24.0 +/- 0.8 nl/min in CMA (P less than 0.005). Tubular hypertrophy resulted in an increase in the length of the proximal convoluted tubule from 5.6 +/- 0.2 to 6.5 +/- 0.2 mm (P less than 0.005). The pattern of HCO3- reabsorption along the length of the proximal convoluted tubule in CMA was indistinguishable from that found in normal rats in which FLHCO3 was varied acutely by altering SNGFR. The increase in tubular length accounted for only 30% of the increase in APRH2O and 15% of the increase in APRHCO3. We conclude that a sustained reduction in GFR is not required for maintenance of CMA in the rat. If GFR is chronically restored to normal levels, the alkalosis is maintained by an increase in APRHCO3. The increase in reabsorption is accounted for by tubular hypertrophy, a chronic adaptive response, and a load-dependent response that is indistinguishable from that seen in normal rats when FLHCO3 is increased acutely by increasing SNGFR.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 709
page 709
icon of scanned page 710
page 710
icon of scanned page 711
page 711
icon of scanned page 712
page 712
icon of scanned page 713
page 713
icon of scanned page 714
page 714
icon of scanned page 715
page 715
icon of scanned page 716
page 716
Version history
  • Version 1 (March 1, 1986): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (28)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts