Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112355

Manipulation of rat brain fatty acid composition alters volatile anesthetic potency.

A S Evers, W J Elliott, J B Lefkowith, and P Needleman

Find articles by Evers, A. in: JCI | PubMed | Google Scholar

Find articles by Elliott, W. in: JCI | PubMed | Google Scholar

Find articles by Lefkowith, J. in: JCI | PubMed | Google Scholar

Find articles by Needleman, P. in: JCI | PubMed | Google Scholar

Published March 1, 1986 - More info

Published in Volume 77, Issue 3 on March 1, 1986
J Clin Invest. 1986;77(3):1028–1033. https://doi.org/10.1172/JCI112355.
© 1986 The American Society for Clinical Investigation
Published March 1, 1986 - Version history
View PDF
Abstract

The molecular mechanism of volatile anesthetic action remains unknown. Attempts to elucidate this mechanism have been complicated by the absence of models in which changes in neuronal cellular properties can be correlated with changes in whole animal anesthetic effect. In this study we describe a model where diet-induced alterations in rat brain fatty acid composition are correlated with alterations in volatile anesthetic potency. Rats maintained on a fat-free diet showed significant depletion of arachidonic acid (20:4 omega 6; 5,8,11,14-eicosatetraenoic acid) and docosahexaenoic acid (22:6 omega 3; 4,7,10,13,16,19,-docosahexaenoic acid) in brain, and a corresponding increase in Mead acid (20: 3 omega 9; 5,8,11-eicosatrienoic acid). These fat-deprived rats were significantly more sensitive to all volatile anesthetics tested than were age-controlled rats on a normal diet. Parenteral supplementation of the fat-deprived animals with linolenic acid (18: 3 omega 3, 9,12,15-octadecatrienoic acid) completely reconstituted the docosahexaenoic acid content of brain without affecting anesthetic sensitivity. In contrast, supplementation of the fat-deprived rats with linoleic acid (18: omega 6; 9,12-octadecadienoic acid) caused a dramatic decrease in anesthetic sensitivity, but only a small change in whole brain arachidonate content. Further analysis revealed that linoleate supplementation of fat-deprived animals resulted in a preferential normalization of the arachidonate content of brain phosphatidylinositol as compared with other brain phosphoglycerides. These results demonstrate for the first time a correlation between changes in membrane composition and anesthetic effect, and indicate that the precise fatty acid composition (perhaps in specific phospholipids) of brain is important in the mechanism of volatile anesthetic action.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1028
page 1028
icon of scanned page 1029
page 1029
icon of scanned page 1030
page 1030
icon of scanned page 1031
page 1031
icon of scanned page 1032
page 1032
icon of scanned page 1033
page 1033
Version history
  • Version 1 (March 1, 1986): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts