Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112307

Biliary excretion of iron from hepatocyte lysosomes in the rat. A major excretory pathway in experimental iron overload.

G D LeSage, L J Kost, S S Barham, and N F LaRusso

Find articles by LeSage, G. in: JCI | PubMed | Google Scholar

Find articles by Kost, L. in: JCI | PubMed | Google Scholar

Find articles by Barham, S. in: JCI | PubMed | Google Scholar

Find articles by LaRusso, N. in: JCI | PubMed | Google Scholar

Published January 1, 1986 - More info

Published in Volume 77, Issue 1 on January 1, 1986
J Clin Invest. 1986;77(1):90–97. https://doi.org/10.1172/JCI112307.
© 1986 The American Society for Clinical Investigation
Published January 1, 1986 - Version history
View PDF
Abstract

In these experiments, we assessed the role of hepatocyte lysosomes in biliary excretion of iron. We loaded rats with iron by feeding 2% carbonyl iron and collected bile for 24 h via bile fistulae from iron-loaded and control rats. In additional rats, bile was collected before and after the administration of colchicine. Rats were then killed and their livers were homogenized and fractionated for biochemical analyses or processed for electron microscopy and x-ray microanalysis. Inclusion of 2% carbonyl iron in the diet caused a 45-fold increase (P less than 0.001) in hepatic iron concentration compared with controls (1,826 +/- 159 vs. 38 +/- 6.7 micrograms/g liver, mean +/- SE). Electron microscopy with quantitative morphometry and x-ray microanalysis showed that the excess iron was sequestered in an increased number of lysosomes concentrated in the pericanalicular region of the hepatocyte. Iron loading was also associated with a twofold increase in biliary iron excretion (4.06 +/- 0.3 vs. 1.75 +/- 0.1 micrograms/g liver/24 h; P less than 0.001). In contrast, the biliary outputs of three lysosomal enzymes were significantly lower (P less than 0.0005) in iron-loaded rats compared with controls (mean +/- SE) expressed as mU/24 h/g liver: N-acetyl-beta-glucosaminidase, 26.7 +/- 4.6 vs. 66.2 +/- 13.4; beta-glucuronidase, 10.1 +/- 1.3 vs. 53.2 +/- 17.9; beta-galactosidase, 8.9 +/- 1.0 vs. 15.4 +/- 2.3. In iron-loaded rats but not in controls, biliary iron excretion was coupled to the release into bile of each of the three lysosomal hydrolases as assessed by linear regression analysis (P less than 0.001). In contrast, no relationships were found between biliary iron excretion and the biliary outputs of a plasma membrane marker enzyme (alkaline phosphodiesterase I) or total protein. After administration of colchicine, there was a parallel increase in biliary excretion of iron and lysosomal enzymes in iron-loaded rats, but not controls. We interpret these data to indicate that, in the rat, biliary iron excretion from hepatocyte lysosomes is an important excretory route for excess hepatic iron.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 90
page 90
icon of scanned page 91
page 91
icon of scanned page 92
page 92
icon of scanned page 93
page 93
icon of scanned page 94
page 94
icon of scanned page 95
page 95
icon of scanned page 96
page 96
icon of scanned page 97
page 97
Version history
  • Version 1 (January 1, 1986): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts