Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (82)

Advertisement

Research Article Free access | 10.1172/JCI112277

15-Hydroxy-5,8,11,13-eicosatetraenoic acid inhibits human vascular cyclooxygenase. Potential role in diabetic vascular disease.

B N Setty and M J Stuart

Find articles by Setty, B. in: JCI | PubMed | Google Scholar

Find articles by Stuart, M. in: JCI | PubMed | Google Scholar

Published January 1, 1986 - More info

Published in Volume 77, Issue 1 on January 1, 1986
J Clin Invest. 1986;77(1):202–211. https://doi.org/10.1172/JCI112277.
© 1986 The American Society for Clinical Investigation
Published January 1, 1986 - Version history
View PDF
Abstract

Human umbilical arteries converted arachidonic acid to three hydroxyeicosatetraenoic acids (HETEs) as well as prostaglandins. The mono-HETEs have been identified by reverse-phase high pressure liquid chromatography and gas chromatography-mass spectroscopy as 15-HETE and 11-HETE. 15-HETE in arterial segments appears to be derived mainly via the 15-lipoxygenase pathway, whereas 11-HETE, and the presumed di-HETE(s) were products of cyclooxygenase. Nordihydroguaiaretic acid, a lipoxygenase inhibitor, stimulated prostanoid production with a concomitant inhibition of 15-HETE formation. These results suggested that 15-HETE may function as an endogenous regulator of prostacyclin. In human umbilical arterial microsomes, 15-HETE was found to inhibit 6-keto-prostaglandin F1 alpha and total prostanoid production in a concentration-dependent manner (median inhibition constant [IC50] of 52 +/- 3 and 63 +/- 4 microM respectively). The relative distribution of prostaglandins, however, remained unaffected, indicating that the site of action was cyclooxygenase. Kinetic analysis revealed that 15-HETE was a competitive inhibitor of the enzyme. Although no changes in maximum velocity occurred, the apparent Km was significantly different (9.3 +/- 6.9 microM [1 SD] for control vs. 37.6 +/- 17.7 microM for the 15-HETE-treated enzyme). Furthermore, the inhibitory effect of 15-HETE on prostacyclin production was confirmed using cultured bovine endothelial cells. In this cell system, not only did 15-HETE inhibit endogenous prostacyclin production, but also the conversion of exogenous [1-14C]arachidonic acid to prostacyclin (IC50 of 40 +/- 17 microM). No effect on arachidonic acid release was noted. To investigate whether our in vitro finding that 15-HETE inhibited prostacyclin production could be relevant to the in vivo situation, our final studies were performed on vasculature obtained from the diabetic milieu. We found that the production of 15-HETE was significantly increased in vasculature obtained from the infant of the diabetic mother (1.14 +/- 0.26 pmol/mg) when compared to control neonates (0.77 +/- 0.22; P less than 0.01). A concomitant decrease in prostacyclin production was seen (51.6 +/- 12.6 pmol/mg in infants of diabetic mothers vs. 71 +/- 22.3 in controls). Moreover, an inverse correlation between these two eicosanoids was also noted. Our results suggest a potential in vivo regulatory role for 15-HETE on prostacyclin production.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 202
page 202
icon of scanned page 203
page 203
icon of scanned page 204
page 204
icon of scanned page 205
page 205
icon of scanned page 206
page 206
icon of scanned page 207
page 207
icon of scanned page 208
page 208
icon of scanned page 209
page 209
icon of scanned page 210
page 210
icon of scanned page 211
page 211
Version history
  • Version 1 (January 1, 1986): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (82)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts