Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112265

Adrenarche and skeletal maturation during luteinizing hormone releasing hormone analogue suppression of gonadarche.

M E Wierman, D E Beardsworth, J D Crawford, J F Crigler Jr, M J Mansfield, H H Bode, P A Boepple, D C Kushner, and W F Crowley Jr

Find articles by Wierman, M. in: JCI | PubMed | Google Scholar

Find articles by Beardsworth, D. in: JCI | PubMed | Google Scholar

Find articles by Crawford, J. in: JCI | PubMed | Google Scholar

Find articles by Crigler, J. in: JCI | PubMed | Google Scholar

Find articles by Mansfield, M. in: JCI | PubMed | Google Scholar

Find articles by Bode, H. in: JCI | PubMed | Google Scholar

Find articles by Boepple, P. in: JCI | PubMed | Google Scholar

Find articles by Kushner, D. in: JCI | PubMed | Google Scholar

Find articles by Crowley, W. in: JCI | PubMed | Google Scholar

Published January 1, 1986 - More info

Published in Volume 77, Issue 1 on January 1, 1986
J Clin Invest. 1986;77(1):121–126. https://doi.org/10.1172/JCI112265.
© 1986 The American Society for Clinical Investigation
Published January 1, 1986 - Version history
View PDF
Abstract

During puberty the effects of adrenal androgens upon skeletal maturation are obscured by the influence of gonadal steroids. Suppression of gonadarche with an analogue of luteinizing hormone releasing hormone (LHRHa) affords an opportunity to examine the onset and progression of adrenarche in the absence of pubertal levels of gonadal steroids in a controlled fashion and to explore the relationship between adrenal androgens and the rate of epiphyseal maturation. In 29 children with central precocious puberty, gonadarche was suppressed with LHRHa administration for 1-4 yr. During LHRHa exposure, dehydroepiandrosterone sulfate (DHAS) levels, as an index of adrenal maturation, were constant or increased in an age-expected manner. The change in bone age for change in chronologic age decreased from 1.7 +/- 0.1 to 0.49 +/- 0.05 (P = 0.00005), indicating that the LHRHa-induced return to a prepubertal gonadal steroid environment was associated with a slowing of skeletal maturation. DHAS levels were correlated with the rate of skeletal advancement before (r = 0.57, P = 0.001) and during 12 to 48 mo of exposure to LHRHa (r = 0.52, P = 0.003). A negative correlation of DHAS values with subsequent increases in predicted mature height was observed (r = -0.49, P = 0.007). Thus, in children with central precocious puberty, adrenarche progressed normally during LHRHa suppression of gonadarche. In children with the onset of progression of adrenarche during maintenance of a prepubertal gonadal steroid milieu, there was less evidence than in preadrenarchal children of a restraint upon skeletal maturation. These data suggest that adrenal androgens contribute importantly to epiphyseal advancement during childhood.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 121
page 121
icon of scanned page 122
page 122
icon of scanned page 123
page 123
icon of scanned page 124
page 124
icon of scanned page 125
page 125
icon of scanned page 126
page 126
Version history
  • Version 1 (January 1, 1986): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts