Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112224

Biochemical marker in familial amyloidotic polyneuropathy, Portuguese type. Family studies on the transthyretin (prealbumin)-methionine-30 variant.

M J Saraiva, P P Costa, and D S Goodman

Find articles by Saraiva, M. in: JCI | PubMed | Google Scholar

Find articles by Costa, P. in: JCI | PubMed | Google Scholar

Find articles by Goodman, D. in: JCI | PubMed | Google Scholar

Published December 1, 1985 - More info

Published in Volume 76, Issue 6 on December 1, 1985
J Clin Invest. 1985;76(6):2171–2177. https://doi.org/10.1172/JCI112224.
© 1985 The American Society for Clinical Investigation
Published December 1, 1985 - Version history
View PDF
Abstract

A transthyretin variant with a methionine for valine substitution at position 30 [TTR(Met30)] is found in Portuguese patients with familial amyloidotic polyneuropathy (FAP). Effective, rapid, small- and semimicro-scale (immunoblotting) procedures were developed to determine whether or not TTR(Met30) is present in the plasma of an individual subject. The immunoblotting procedure employs only 0.10 ml of serum and can serve as a reliable procedure for the screening of large numbers of persons for the presence of TTR(Met30). In family studies of seven FAP kindreds, TTR(Met30) was found in 21 out of 41 asymptomatic FAP offspring, and its presence was not related to either age or sex. Thus, the mutant TTR segregated in accordance with the known autosomal dominant mode of inheritance of FAP. Total plasma TTR levels were not reduced in asymptomatic FAP offspring who were carriers of TTR(Met30), and no difference was observed between carriers and noncarriers of the mutant TTR. The ratios of the variant to normal TTR in plasma were estimated in asymptomatic FAP offspring and were similar to those found in FAP patients. In contrast, TTR(Met30) was relatively enriched in cerebrospinal fluid samples from two FAP patients. The significance of this finding is not known, but might relate to the preferential deposition of amyloid in the nervous system in FAP. A limited study was conducted involving simultaneous analysis of both stored (collected in 1975) and fresh serum from 20 FAP offspring, all of whom had been asymptomatic in 1975. In every subject, the results obtained with the stored and the fresh serum samples were in agreement. Six of these subjects developed clinical FAP since 1975; TTR(Met30) was present in each of these subjects. These several studies strongly suggest that the presence of TTR(Met30) in plasma constitutes a predictive biochemical marker of FAP in the preclinical phase of the disease.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2171
page 2171
icon of scanned page 2172
page 2172
icon of scanned page 2173
page 2173
icon of scanned page 2174
page 2174
icon of scanned page 2175
page 2175
icon of scanned page 2176
page 2176
icon of scanned page 2177
page 2177
Version history
  • Version 1 (December 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts