Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 2 patents
9 readers on Mendeley
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112193

Independent modulation of von Willebrand factor and fibrinogen binding to the platelet membrane glycoprotein IIb/IIIa complex as demonstrated by monoclonal antibody.

V T Lombardo, E Hodson, J R Roberts, T J Kunicki, T S Zimmerman, and Z M Ruggeri

Find articles by Lombardo, V. in: PubMed | Google Scholar

Find articles by Hodson, E. in: PubMed | Google Scholar

Find articles by Roberts, J. in: PubMed | Google Scholar

Find articles by Kunicki, T. in: PubMed | Google Scholar

Find articles by Zimmerman, T. in: PubMed | Google Scholar

Find articles by Ruggeri, Z. in: PubMed | Google Scholar

Published November 1, 1985 - More info

Published in Volume 76, Issue 5 on November 1, 1985
J Clin Invest. 1985;76(5):1950–1958. https://doi.org/10.1172/JCI112193.
© 1985 The American Society for Clinical Investigation
Published November 1, 1985 - Version history
View PDF
Abstract

In this study we have used two new monoclonal antibodies, designated LJP5 and LJP9, as well as a previously described one, AP2, all specific for the platelet membrane glycoprotein (GP)IIb/IIIa complex. None of them reacted with dissociated GPIIb or GPIIIa. The monovalent Fab fragment of both LJP5 and LJP9 bound to unstimulated platelets in a saturable manner, but binding was markedly decreased after platelets had been incubated at 37 degrees C in the absence of added extracellular calcium. The binding of LJP9 was not affected by AP2, but was blocked by excess LJP5. On the contrary, the binding of LJP5 was blocked in the presence of both AP2 and LJP9. Thus, these antibodies bound to distinct epitopes of GPIIb/IIIa. At saturation, the binding to unstimulated platelets was between 2.41 and 10.9 X 10(4) molecules/platelet for LJP5 and between 3.47 and 9.1 X 10(4) molecules/platelet for LJP9 (range of 11 and 10 experiments, respectively). Binding increased up to 50% after thrombin stimulation. The estimated association constant, Ka, was 2.7 X 10(7) M-1 for LJP5 and 3.85 X 10(7) M-1 for LJP9. Both LJP5 and LJP9 partially inhibited the association of 45Ca2+ with the surface of unstimulated platelets. Moreover, both antibodies blocked the binding of von Willebrand factor (vWF) to stimulated platelets, whereas only LJP9, but not LJP5, blocked fibrinogen binding. LJP9 was also a potent inhibitor of platelet aggregation, whereas LJP5 was without effect in this regard. The results of the present study demonstrate that independent modulation of vWF and fibrinogen binding to stimulated platelets can be attained with monoclonal antibodies directed against distinct epitopes of GPIIb/IIIa.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1950
page 1950
icon of scanned page 1951
page 1951
icon of scanned page 1952
page 1952
icon of scanned page 1953
page 1953
icon of scanned page 1954
page 1954
icon of scanned page 1955
page 1955
icon of scanned page 1956
page 1956
icon of scanned page 1957
page 1957
icon of scanned page 1958
page 1958
Version history
  • Version 1 (November 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
9 readers on Mendeley
See more details