It is thought that cysts in polycystic kidneys originate from nephron segments and function in a manner similar to the segment or origin. The indirect evidence for this derives from studies of microanatomy and cyst fluid composition. Cysts with low Na+ have been classified as distal, whereas cysts with high Na+ have been classified as proximal. In order to directly determine the transport characteristics of cyst epithelium, cysts from a human polycystic kidney were studied in vitro using Ussing chamber techniques. Composition of cyst fluid was determined in parallel with these studies. Cysts with low Na+ (gradient cysts) demonstrate characteristics consistent with distal nephron origin including elevated potential difference (PD), short-circuit current (Isc), and low conductance. PD and Isc of gradient cysts were amiloride sensitive. Nongradient cysts, however, require additional characterization. At least two types of nongradient cysts were identified, one with characteristics consistent with proximal nephron origin and another apparently without function. These studies are the first direct evidence for active transport of cysts from human polycystic kidney and provide strong evidence to support the concept that cysts function in the same manner as the nephron segment of origin.
R D Perrone
Usage data is cumulative from June 2024 through June 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 125 | 4 |
39 | 15 | |
Scanned page | 136 | 0 |
Citation downloads | 45 | 0 |
Totals | 345 | 19 |
Total Views | 364 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.