Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (83)

Advertisement

Research Article Free access | 10.1172/JCI112142

Interaction of cardiopulmonary and carotid baroreflex control of vascular resistance in humans.

R G Victor and A L Mark

Find articles by Victor, R. in: JCI | PubMed | Google Scholar

Find articles by Mark, A. in: JCI | PubMed | Google Scholar

Published October 1, 1985 - More info

Published in Volume 76, Issue 4 on October 1, 1985
J Clin Invest. 1985;76(4):1592–1598. https://doi.org/10.1172/JCI112142.
© 1985 The American Society for Clinical Investigation
Published October 1, 1985 - Version history
View PDF
Abstract

Previous studies in experimental animals indicate an important inhibitory interaction between cardiopulmonary and arterial baroreflexes. In the dog, for example, cardiopulmonary vagal afferents modulate carotid baroreflex control of vascular resistance. On the other hand, previous studies in human subjects have not produced convincing evidence of a specific interaction between these baroreceptor reflexes. The purpose of this study was to determine whether unloading of cardiopulmonary baroreceptors in humans with nonhypotensive lower body negative pressure selectively augments the reflex vasoconstrictor responses to simulated carotid hypotension produced by neck pressure. In nine healthy subjects, we measured forearm vascular responses with plethysmography during lower body negative pressure alone (cardiopulmonary baroreflex), during neck pressure alone (carotid baroreflex), and during concomitant lower body negative pressure and neck pressure (baroreflex interaction). Lower body negative pressure produced a greater than twofold augmentation of the forearm vasoconstrictor response to neck pressure. This increase in resistance was significantly greater (P less than 0.05) than the algebraic sum of the increase in resistance from lower body negative pressure alone plus that from neck pressure alone. In contrast, lower body negative pressure did not potentiate the forearm vasoconstrictor responses either to intra-arterial norepinephrine or to the cold pressor test. Thus, the potentiation of the vasoconstrictor response to neck pressure by lower body negative pressure cannot be explained by augmented reactivity to the neurotransmitter or to a nonspecific augmentation of responses to all reflex vasoconstrictor stimuli. In conclusion, nonhypotensive lower body negative pressure selectively augments carotid baroreflex control of forearm vascular resistance. These experiments demonstrate a specific inhibitory cardiopulmonary-carotid baroreflex interaction in humans.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1592
page 1592
icon of scanned page 1593
page 1593
icon of scanned page 1594
page 1594
icon of scanned page 1595
page 1595
icon of scanned page 1596
page 1596
icon of scanned page 1597
page 1597
icon of scanned page 1598
page 1598
Version history
  • Version 1 (October 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (83)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts