Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (21)

Advertisement

Research Article Free access | 10.1172/JCI112139

In vivo stimulation of sugar uptake in rat thymocytes. An extranuclear action of 3,5,3'-triiodothyronine.

J Segal and S H Ingbar

Find articles by Segal, J. in: JCI | PubMed | Google Scholar

Find articles by Ingbar, S. in: JCI | PubMed | Google Scholar

Published October 1, 1985 - More info

Published in Volume 76, Issue 4 on October 1, 1985
J Clin Invest. 1985;76(4):1575–1580. https://doi.org/10.1172/JCI112139.
© 1985 The American Society for Clinical Investigation
Published October 1, 1985 - Version history
View PDF
Abstract

In previous studies we have demonstrated that 3,5,3'-triiodothyronine (T3) in vitro produces a prompt increase in the uptake of the sugar analogue 2-deoxyglucose (2-DG) by freshly isolated rat thymocytes. This effect is prompt, being evident at 20 min after addition of T3, is independent of new protein synthesis, and can be elicited by physiologic concentrations of the hormone. In the present studies, we have sought to determine whether physiologic doses of T3 are capable of inducing an increase in 2-DG uptake in the thymocytes of the living animal. Therefore, 26-28-d-old female rats were injected with increasing doses of i.v. T3, followed 60 min later by 3H-labeled 2-DG. 30 min later, animals were killed, thymocytes were isolated, and their 3H content determined. Uptake of [3H]2-DG was increased by T3 in a dose-dependent manner. The lowest effective dose was 10 ng/100 g of body weight (30% above control) and the maximally effective dose 1 microgram/100 g of body weight (116% above control). The effect of T3 was independent of new protein synthesis in that it was not blocked by a dose of cycloheximide that inhibited the incorporation of [3H]leucine into thymocyte protein by 92-95%. Comparable studies with various thyronine analogues revealed the following rank order of potency: L-T3 greater than L-3,5,3'5'-tetraiodothyronine (L-T4) greater than D-T3 greater than or equal to D-T4 greater than L-3,3'5'-triiodothyronine greater than 3'-isopropyl-3,5-L-diiodothyronine (T2) = 3,5-L-T2. DL-thyronine was without effect. These studies indicate that T3 in physiologic doses acts in vivo to increase the uptake of sugar by rat thymocytes by a mechanism that is extranuclear in origin, in that it is independent of new protein synthesis. The findings support the conclusion that the previously demonstrated effects of T3 on thymocyte sugar uptake in vitro, which seem clearly to be mediated at the level of the plasma membrane, have physiologic relevance.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1575
page 1575
icon of scanned page 1576
page 1576
icon of scanned page 1577
page 1577
icon of scanned page 1578
page 1578
icon of scanned page 1579
page 1579
icon of scanned page 1580
page 1580
Version history
  • Version 1 (October 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (21)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts