Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (61)

Advertisement

Research Article Free access | 10.1172/JCI112137

Human fat cell lipolysis is primarily regulated by inhibitory modulators acting through distinct mechanisms.

H Kather, W Bieger, G Michel, K Aktories, and K H Jakobs

Find articles by Kather, H. in: PubMed | Google Scholar

Find articles by Bieger, W. in: PubMed | Google Scholar

Find articles by Michel, G. in: PubMed | Google Scholar

Find articles by Aktories, K. in: PubMed | Google Scholar

Find articles by Jakobs, K. in: PubMed | Google Scholar

Published October 1, 1985 - More info

Published in Volume 76, Issue 4 on October 1, 1985
J Clin Invest. 1985;76(4):1559–1565. https://doi.org/10.1172/JCI112137.
© 1985 The American Society for Clinical Investigation
Published October 1, 1985 - Version history
View PDF
Abstract

The effects of adenosine deaminase and of pertussis toxin on hormonal regulation of lipolysis were investigated in isolated human fat cells. Adenosine deaminase (1.6 micrograms/ml) caused a two-to threefold increase in cyclic AMP, which was associated with an increase in glycerol release averaging 150-200% above basal levels. Clonidine, N6-phenylisopropyladenosine, prostaglandin E2, and insulin caused a dose-dependent inhibition of glycerol release in the presence of adenosine deaminase. Pretreatment of adipocytes with pertussis toxin (5 micrograms/ml) for 180 min resulted in a five- to sevenfold increase in cyclic AMP. Glycerol release was almost maximal and isoproterenol caused either no further increase or only a marginal additional increase of lipolysis after pretreatment with pertussis toxin, whereas cyclic AMP levels were 500 times higher than in controls. The effects of antilipolytic agents known to affect lipolysis by inhibition of adenylate cyclase activity, i.e., clonidine, N6-phenylisopropyladenosine, and prostaglandin E2, were impaired. In contrast, the antilipolytic action of insulin was preserved in adipocytes pretreated with pertussis toxin. As in controls, the peptide hormone had no detectable effect on cyclic AMP after pertussis toxin treatment. The findings support the view that the antilipolytic effect of insulin does not require adenylate cyclase or phosphodiesterase action. In addition, the results demonstrate that, upon relief of endogenous inhibition, human fat cell lipolysis proceeds at considerable (adenosine deaminase) or almost maximal (pertussis toxin) rates. A certain degree of inhibition, therefore, appears to be necessary for human fat cell lipolysis to be susceptible for hormonal activation.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1559
page 1559
icon of scanned page 1560
page 1560
icon of scanned page 1561
page 1561
icon of scanned page 1562
page 1562
icon of scanned page 1563
page 1563
icon of scanned page 1564
page 1564
icon of scanned page 1565
page 1565
Version history
  • Version 1 (October 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (61)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts