Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Effects of vasopressin antagonist on vasopressin binding, adenylate cyclase activation, and water flux.
J K Kim, … , R J Anderson, R W Schrier
J K Kim, … , R J Anderson, R W Schrier
Published October 1, 1985
Citation Information: J Clin Invest. 1985;76(4):1530-1535. https://doi.org/10.1172/JCI112133.
View: Text | PDF
Research Article

Effects of vasopressin antagonist on vasopressin binding, adenylate cyclase activation, and water flux.

  • Text
  • PDF
Abstract

We studied the effect of an arginine vasopressin (AVP) analogue, (1-[beta-mercapto-beta, beta-cyclopentamethylenepropionic acid],2-O-ethyltyrosine, 4-valine)AVP(d[CH2]5Tyr[Et]VAVP), on the stimulation of adenylate cyclase by various hormones in the isolated nephron segments and 3H-AVP binding to renal papillary membranes from the rat. The net water flux across the renal cortical collecting tubules of the rabbit was also examined. We found that d(CH2)5Tyr(Et)VAVP significantly inhibited adenylate cyclase activation by AVP in cortical, medullary, and papillary collecting tubules and in the medullary thick ascending limb. In contrast, the AVP analogue did not alter the stimulation of adenylate cyclase by parathyroid hormone in the cortical thick ascending limb, by glucagon in the medullary thick ascending limb, and by calcitonin in cortical collecting tubules. In addition, d(CH2)5Tyr(Et)VAVP blocked [3H]AVP binding to renal papillary membranes. The enhanced net water transport induced by AVP in isolated, perfused rabbit cortical collecting tubules also was completely blocked by this AVP analogue. These results indicate that d(CH2)5Tyr(Et)VAVP specifically antagonizes the cellular action of AVP on the medullary thick ascending limb and on the cortical, medullary, and papillary collecting tubules. Evidence is also presented for competitive antagonism as the cellular mechanism of action.

Authors

J K Kim, M A Dillingham, S N Summer, S Ishikawa, R J Anderson, R W Schrier

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 72 0
PDF 32 13
Scanned page 184 1
Citation downloads 39 0
Totals 327 14
Total Views 341

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts