Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 6

See more details

Referenced in 2 patents
21 readers on Mendeley
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112108

Structural analysis of hepatitis B surface antigen by monoclonal antibodies.

E Ben-Porath, J R Wands, R A Marciniak, M A Wong, L Hornstein, R Ryder, M Canlas, A Lingao, and K J Isselbacher

Find articles by Ben-Porath, E. in: JCI | PubMed | Google Scholar

Find articles by Wands, J. in: JCI | PubMed | Google Scholar

Find articles by Marciniak, R. in: JCI | PubMed | Google Scholar

Find articles by Wong, M. in: JCI | PubMed | Google Scholar

Find articles by Hornstein, L. in: JCI | PubMed | Google Scholar

Find articles by Ryder, R. in: JCI | PubMed | Google Scholar

Find articles by Canlas, M. in: JCI | PubMed | Google Scholar

Find articles by Lingao, A. in: JCI | PubMed | Google Scholar

Find articles by Isselbacher, K. in: JCI | PubMed | Google Scholar

Published October 1, 1985 - More info

Published in Volume 76, Issue 4 on October 1, 1985
J Clin Invest. 1985;76(4):1338–1347. https://doi.org/10.1172/JCI112108.
© 1985 The American Society for Clinical Investigation
Published October 1, 1985 - Version history
View PDF
Abstract

A method has been developed for the analysis of hepatitis B surface antigen (HBsAg) antigenic structure at the molecular level that creates "fingerprints" or "signatures" of various hepatitis B viral (HBV) strains. This technique employs high affinity IgM and IgG monoclonal antibodies (anti-HBs) directed against distinct and separate determinants on HBsAg. In performing this antigenic structural analysis, separate binding curves for different monoclonal anti-HBs are generated by measuring immunoreactivity in serial dilutions of HBsAg-positive serum by radioimmunoassay. Since the HBsAg concentration in serum is unknown, the binding profiles of groups of samples are aligned by an iterative least-squares procedure to generate the numerical signature characteristic of the viral strain. The numerical signatures are then displayed on a computer-graphic plot. The signature profiles of HBsAg subtypes are a true reflection of their antigenic structure, and in vertical and horizontal transmission studies the molecular characteristics of the viral epitopes are conserved. By signature analysis we found substantial antigenic heterogeneity among the ayw3 strain both in the U.S. and France, as well as in populations of the Far East and Africa. Populations in Ethiopia, Gambia, and the Philippines were infected with two antigenically distinct HBV strains. In some newly identified HBV strains, it was found that epitopes identified by some monoclonal antibodies were absent or substantially reduced, which suggested that a genetic mutation may have occurred. Thus this study suggests that there is far more antigenic heterogeneity in HBV than previously recognized. These variants are antigenically distinct from each other at the epitope level, and were heretofore unrecognized by polyvalent anti-HBsAg antibodies.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1338
page 1338
icon of scanned page 1339
page 1339
icon of scanned page 1340
page 1340
icon of scanned page 1341
page 1341
icon of scanned page 1342
page 1342
icon of scanned page 1343
page 1343
icon of scanned page 1344
page 1344
icon of scanned page 1345
page 1345
icon of scanned page 1346
page 1346
icon of scanned page 1347
page 1347
Version history
  • Version 1 (October 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 6
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
21 readers on Mendeley
See more details