Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 2 patents
5 readers on Mendeley
  • Article usage
  • Citations to this article (23)

Advertisement

Research Article Free access | 10.1172/JCI112105

Low expression of human histocompatibility leukocyte antigen-DR is associated with hypermethylation of human histocompatibility leukocyte antigen-DR alpha gene regions in B cells from patients with systemic lupus erythematosus.

H Sano, L J Compton, N Shiomi, A D Steinberg, R A Jackson, and T Sasaki

Find articles by Sano, H. in: JCI | PubMed | Google Scholar

Find articles by Compton, L. in: JCI | PubMed | Google Scholar

Find articles by Shiomi, N. in: JCI | PubMed | Google Scholar

Find articles by Steinberg, A. in: JCI | PubMed | Google Scholar

Find articles by Jackson, R. in: JCI | PubMed | Google Scholar

Find articles by Sasaki, T. in: JCI | PubMed | Google Scholar

Published October 1, 1985 - More info

Published in Volume 76, Issue 4 on October 1, 1985
J Clin Invest. 1985;76(4):1314–1322. https://doi.org/10.1172/JCI112105.
© 1985 The American Society for Clinical Investigation
Published October 1, 1985 - Version history
View PDF
Abstract

The relationship between the expression of HLA-DR antigens and the HLA-DR alpha gene methylation was examined in systemic lupus erythematosus (SLE). Using permanent B cell lines, we found reduced DR expression in SLE. The low DR expression was correlated with high anti-DNA antibody titers in patients' sera. The amounts of DR alpha message were lower in SLE cells than in normal controls, suggesting that the low expression of DR antigens is associated with gene functions. The extent of DNA methylation was examined at five CCGG sites in the HLA-DR alpha locus. DNA from both SLE and normal cells showed variable methylation patterns. Since the DR alpha gene is a single-copy gene, such a variability is the result of assaying a mixture of transformed clones containing methylated DR alpha gene, with other clones containing unmethylated DR alpha gene. A distinctive feature of normal cells was a consistent methylation pattern: 12 normal cell lines showed exactly the same pattern. In contrast, 28 SLE cell lines showed a cell-line-specific methylation, and hypermethylation at the DR alpha locus. The hypermethylation is often associated with transcriptionally inactive genes. Thus, our results suggest that (a) B cells with hypermethylated DR genes might express no or few DR antigens; (b) the ratio of cells with differently methylated DR genes is consistent in normal individuals, while, in SLE patients, cells with hypermethylated DR genes predominate, resulting in apparently reduced DR antigen expression; and (c) the aberrant DR expression could be associated directly with immunoregulatory dysfunctions in SLE disease.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1314
page 1314
icon of scanned page 1315
page 1315
icon of scanned page 1316
page 1316
icon of scanned page 1317
page 1317
icon of scanned page 1318
page 1318
icon of scanned page 1319
page 1319
icon of scanned page 1320
page 1320
icon of scanned page 1321
page 1321
icon of scanned page 1322
page 1322
Version history
  • Version 1 (October 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (23)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
5 readers on Mendeley
See more details