Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (66)

Advertisement

Research Article Free access | 10.1172/JCI112016

Multiple disturbances of free fatty acid metabolism in noninsulin-dependent diabetes. Effect of oral hypoglycemic therapy.

M R Taskinen, C Bogardus, A Kennedy, and B V Howard

Find articles by Taskinen, M. in: PubMed | Google Scholar

Find articles by Bogardus, C. in: PubMed | Google Scholar

Find articles by Kennedy, A. in: PubMed | Google Scholar

Find articles by Howard, B. in: PubMed | Google Scholar

Published August 1, 1985 - More info

Published in Volume 76, Issue 2 on August 1, 1985
J Clin Invest. 1985;76(2):637–644. https://doi.org/10.1172/JCI112016.
© 1985 The American Society for Clinical Investigation
Published August 1, 1985 - Version history
View PDF
Abstract

To assess the mechanisms for the elevation of free fatty acids in noninsulin-dependent diabetes, free fatty acid metabolism and lipid and carbohydrate oxidation were compared in 14 obese diabetic Pima Indians and in 13 age-, sex-, and weight-matched nondiabetics. The studies were repeated in 10 of the diabetics after 1 mo of oral hypoglycemic therapy. Fasting plasma glucose concentrations were elevated in diabetics (242 +/- 14 vs. 97 +/- 3 mg/dl, P less than 0.01) and decreased to 142 +/- 12 (P less than 0.01) after therapy. Fasting free fatty acid concentrations were elevated in diabetics (477 +/- 26 vs. 390 +/- 39 mumol/liter, P less than 0.01) and declined to normal values after therapy (336 +/- 32, P less than 0.01). Although free fatty acid transport rate was correlated with obesity (r = 0.75, P less than 0.001), the transport of free fatty acid was not higher in diabetics than in nondiabetics and did not change after therapy. On the other hand, the fractional catabolic rate for free fatty acid was significantly lower in untreated diabetics (0.55 +/- 0.04 vs. 0.71 +/- 0.06 min-1, P less than 0.05); it increased after therapy to 0.80 +/- 0.09 min-1, P less than 0.05, and was inversely correlated with fasting glucose (r = -0.52, P less than 0.01). In diabetics after therapy, lipid oxidation rates fell significantly (from 1.35 +/- 0.06 to 1.05 +/- 0.01 mg/min per kg fat-free mass, P less than 0.01), whereas carbohydrate oxidation increased (from 1.21 +/- 0.10 to 1.73 +/- 0.13 mg/min per kg fat-free mass, P less than 0.01); changes in lipid and carbohydrate oxidation were correlated (r = 0.72, P less than 0.02), and in all subjects lipid oxidation accounted for only approximately 40% of free fatty acid transport. The data suggest that in noninsulin-dependent diabetics, although free fatty acid production may be elevated because of obesity, the elevations in plasma free fatty acid concentrations are also a result of reduced removal, and fractional clearance of free fatty acid appears to be closely related to diabetic control. Furthermore, the increase in fractional clearance rate, despite a marked decrease in lipid oxidation, suggests that the clearance defect in the diabetics is due to an impairment in reesterification, which is restored after therapy.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 637
page 637
icon of scanned page 638
page 638
icon of scanned page 639
page 639
icon of scanned page 640
page 640
icon of scanned page 641
page 641
icon of scanned page 642
page 642
icon of scanned page 643
page 643
icon of scanned page 644
page 644
Version history
  • Version 1 (August 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (66)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts