Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111972

Leukotriene C4 binds to human glomerular epithelial cells and promotes their proliferation in vitro.

L Baud, J Sraer, J Perez, M P Nivez, and R Ardaillou

Find articles by Baud, L. in: JCI | PubMed | Google Scholar

Find articles by Sraer, J. in: JCI | PubMed | Google Scholar

Find articles by Perez, J. in: JCI | PubMed | Google Scholar

Find articles by Nivez, M. in: JCI | PubMed | Google Scholar

Find articles by Ardaillou, R. in: JCI | PubMed | Google Scholar

Published July 1, 1985 - More info

Published in Volume 76, Issue 1 on July 1, 1985
J Clin Invest. 1985;76(1):374–377. https://doi.org/10.1172/JCI111972.
© 1985 The American Society for Clinical Investigation
Published July 1, 1985 - Version history
View PDF
Abstract

In human and experimental glomerulonephritis, glomerular hypercellularity results both from accumulation of macrophages and proliferation of resident glomerular cells. The recent identification of macrophage-derived factors that stimulate mesangial and epithelial cell proliferation suggests that these factors might contribute to the hypercellularity. To determine the identity of such macrophage-derived growth factors, we studied the effect of leukotrienes (LTs), products that are released from macrophages and leukocytes, on proliferation of human glomerular epithelial cells in culture. Dose-dependent (1-100 nM) stimulation of [3H]thymidine incorporation, an index of cell proliferation, was observed in cells incubated with the sulfidopeptide LTs, LTC4 and LTD4, but not with LTB4. The response was 248 and 172% of control values at 100 nM LTC4 and LTD4, respectively. This effect of LTC4 was abolished by FPL 55712. Subsequent binding studies demonstrated that glomerular epithelial cells possess specific receptors for LTC4. [3H]LTC4 bound rapidly at 8 degrees C to the cells. There was a plateau after 40 min incubation. Maximum specific binding was 70-90% of total binding. Specific binding was totally reversible with addition of an excess of unlabeled LTC4. Analysis of time-course association slopes at two concentrations of [3H]LTC4 and of the competition between a single concentration of [3H]LTC4 and increasing concentrations of unlabelled LTC4 allowed calculation of dissociation constants (Kd) of 220 and 217 nM, respectively. Both LTD4 and LTE4 exhibited ED50 values that were at least one order of magnitude higher than for LTC4. Thus, our findings suggest that LTC4 binds to specific receptors of glomerular epithelial cells, promotes proliferation of these cells, and could contribute to epithelial hypercellularity found in glomerulonephritis.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 374
page 374
icon of scanned page 375
page 375
icon of scanned page 376
page 376
icon of scanned page 377
page 377
Version history
  • Version 1 (July 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts