Erythrocyte skeletal proteins are known to play an important role in determining membrane deformability. In order to see whether transmembrane proteins also influence deformability and, if so, whether this influence is mediated by an interaction with the membrane skeleton, we examined the effect on deformability of ligands specific for transmembrane proteins. We found membrane deformability markedly reduced in erythrocytes that were pretreated with glycophorin A-specific ligands. In contrast, ligands specific for band 3 and A and B blood group antigens had no effect. The increase in membrane rigidity appeared to depend upon a transmembrane event and not upon a rigidity-inducing lattice on the outside surface of the cell in that a monovalent Fab of antiglycophorin IgG caused decreased deformability. We therefore looked for a ligand-induced association of glycophorin and the skeletal proteins and found, in Triton X-100-insoluble residues, a partitioning of glycophorin with the skeletal proteins only after preincubation with a ligand specific for glycophorin. We then studied cells and resealed membranes with skeletal protein abnormalities. In spectrin-deficient and protein 4.1-deficient erythrocytes and in 2,3-diphosphoglycerate-treated resealed membranes, the antiglycophorin IgG was only one-third as effective in decreasing deformability as it was in normal cells. Thus, normal skeletal proteins appear to be essential for liganded glycophorin to affect membrane deformability maximally. Taken together, these observations indicate that there is a ligand-induced interaction between glycophorin A and skeletal proteins and that this interaction can directly influence membrane deformability.
J A Chasis, N Mohandas, S B Shohet
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 151 | 13 |
46 | 28 | |
Scanned page | 273 | 2 |
Citation downloads | 64 | 0 |
Totals | 534 | 43 |
Total Views | 577 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.