Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (60)

Advertisement

Research Article Free access | 10.1172/JCI111851

Mechanism of preservation of glomerular perfusion and filtration during acute extracellular fluid volume depletion. Importance of intrarenal vasopressin-prostaglandin interaction for protecting kidneys from constrictor action of vasopressin.

A Yared, V Kon, and I Ichikawa

Laboratory of Renal Physiology, Department of Medicine, The Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA.

Find articles by Yared, A. in: JCI | PubMed | Google Scholar

Laboratory of Renal Physiology, Department of Medicine, The Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA.

Find articles by Kon, V. in: JCI | PubMed | Google Scholar

Laboratory of Renal Physiology, Department of Medicine, The Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA.

Find articles by Ichikawa, I. in: JCI | PubMed | Google Scholar

Published May 1, 1985 - More info

Published in Volume 75, Issue 5 on May 1, 1985
J Clin Invest. 1985;75(5):1477–1487. https://doi.org/10.1172/JCI111851.
© 1985 The American Society for Clinical Investigation
Published May 1, 1985 - Version history
View PDF
Abstract

Glomerular circulatory dynamics were assessed in 60 adult anesthetized rats, which were either deprived or not deprived of water for 24-48 h. Water-deprived rats (n = 21) were characterized by a depressed level of single nephron glomerular filtration rate (SNGFR) when compared with nonwater-deprived controls (n = 8) (23.2 +/- 1.3 vs. 44.8 +/- 4.1 nl/min). This was primarily due to decreased glomerular plasma flow rate (71 +/- 5 vs. 169 +/- 23 nl/min) and glomerular capillary ultrafiltration coefficient (0.028 +/- 0.003 vs. 0.087 +/- 0.011 nl/[s . mmHg]). Infusion of saralasin to these water-deprived rats resulted in significant increases in plasma flow rate and ultrafiltration coefficient, and decline in arteriolar resistances. Consequently, SNGFR increased by approximately 50% from pre-saralasin levels. When water-deprived saralasin-treated rats were given a specific antagonist to the vascular action of arginine vasopressin (AVP), d(CH2)5Tyr(Me)AVP, a fall in systemic blood pressure occurred, on average from 102 +/- 5 to 80 +/- 5 mmHg, unaccompanied by dilation of renal arterioles, so that both plasma flow rate (129 +/- 8 vs. 85 +/- 13 nl/min) and SNGFR (31.0 +/- 2.9 vs. 18.2 +/- 4.4 nl/min) decreased. This more selective extrarenal constrictor action of AVP was further documented in additional studies in which cardiac output and whole kidney blood flow rate were simultaneously measured. In water-diuretic rats, administration of a moderately pressor dose of AVP (4 mU/kg per min) resulted in a significant rise in kidney blood flow rate (from 8.8 +/- 1.2 to 9.6 +/- 1.3 ml/min). The higher kidney blood flow rate occurred despite a fall in cardiac output (from 111 +/- 7 to 98 +/- 9 ml/min), and was associated with a significant increase in the ratio of systemic vascular to renal vascular resistance (on average from 0.083 +/- 0.014 to 0.106 +/- 0.019). Furthermore, infusion of d(CH2)5Tyr(Me)AVP to water-deprived animals (n = 6) to antagonize endogenous AVP resulted in systemic but not renal vasodilation, so that kidney blood flow rate fell (by approximately 30%), as did systemic-to-renal resistance ratio (by approximately 30%). When the above two experiments were repeated in indomethacin-treated animals, exogenous AVP administration in water-diuretic rats (n = 6) and antagonism of endogenous AVP in water-deprived rats (n = 7) caused, respectively, parallel constriction and dilation in systemic and renal vasculatures. The net effect was unaltered systemic to renal vascular resistance ratio in both cases. These results indicate that (1) unlike angiotensin II, AVP maintains glomerular perfusion and filtration in acute extracellular fluid volume depletion by a more selective constriction of the extrarenal vasculature. (2) The relative renal insensitivity to the vasoconstrictor action of AVP appears to be due to an AVP-induced release of a potent renal vasodilator, sensitive to indomethacin, presumably prostaglandins.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1477
page 1477
icon of scanned page 1478
page 1478
icon of scanned page 1479
page 1479
icon of scanned page 1480
page 1480
icon of scanned page 1481
page 1481
icon of scanned page 1482
page 1482
icon of scanned page 1483
page 1483
icon of scanned page 1484
page 1484
icon of scanned page 1485
page 1485
icon of scanned page 1486
page 1486
icon of scanned page 1487
page 1487
Version history
  • Version 1 (May 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (60)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts