Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (3)

Advertisement

Research Article Free access | 10.1172/JCI111793

Roles of Ca2+ and Na+ on the modulation of antidiuretic hormone action on urea permeability in toad urinary bladder.

M A Hardy and H M Ware

Find articles by Hardy, M. in: PubMed | Google Scholar

Find articles by Ware, H. in: PubMed | Google Scholar

Published March 1, 1985 - More info

Published in Volume 75, Issue 3 on March 1, 1985
J Clin Invest. 1985;75(3):921–931. https://doi.org/10.1172/JCI111793.
© 1985 The American Society for Clinical Investigation
Published March 1, 1985 - Version history
View PDF
Abstract

The present studies probe the role of Ca2+ and Na+ in the stimulation-permeability coupling sequences by which antidiuretic hormone (ADH) induces a cyclic AMP (cAMP)-mediated increase in urea permeability in toad urinary bladder. The following results were obtained: (a) Removal of mucosal Na+ or Ca2+ or deletion of serosal Ca2+ did not modify ADH action. (b) Reduction of the serosal Na+ concentration to less than 50 mM inhibited the effects of both ADH and cAMP. The minimal concentration of serosal Na+ needed for the hormone to elicit its maximal effect was reduced to approximately 10 mM if serosal Ca2+ was concomitantly deleted. (c) The Na+ ionophore monensin produced an inhibition of ADH and cAMP actions that was dependent on the presence of Na+ and Ca2+ in the serosa. (d) The Ca2+ ionophore A23187 produced a serosal Ca2+-dependent inhibition of ADH effect and did not modify cAMP action. (e) Carbachol, which increases Ca2+ uptake to the same extent that A23187 does, had no effect on ADH action. (f) Quinidine, which releases Ca2+ from intracellular stores, produced a large inhibition of the action of ADH but not that of cAMP; the inhibition was greatly reduced if serosal Ca2+ was deleted. (g) Dinitrophenol and iodoacetate, which also release Ca2+ from intracellular pools, had no effect on ADH action. (h) The Ca2+ channel blocker diltiazem had no effect on ADH action and did not modify the inhibitions produced by deletion of serosal Na+ or monensin. (i) The cyclooxygenase inhibitor indomethacin partially removed the inhibition produced by deletion of serosal Na+ and almost completely impeded the inhibitions produced by either monensin or A23187. It is concluded: (a) Extracellular Ca2+, Na+ transport rates, and serosal Na+, in concentrations between 10 and 110 mM, have no participation in modulating the increase in urea permeability produced by ADH. (b) Increases in cytosolic Ca2+ activity, which are capable of inhibiting the effect of ADH on urea permeability at pre- and/or post-cAMP steps, seem to be highly compartmentalized. (c) Endogenous prostaglandins might play a role in the inhibitions produced by absence of serosal Na+, monensin, or A23187.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 921
page 921
icon of scanned page 922
page 922
icon of scanned page 923
page 923
icon of scanned page 924
page 924
icon of scanned page 925
page 925
icon of scanned page 926
page 926
icon of scanned page 927
page 927
icon of scanned page 928
page 928
icon of scanned page 929
page 929
icon of scanned page 930
page 930
icon of scanned page 931
page 931
Version history
  • Version 1 (March 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (3)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts