Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Renal mechanism of action of rat atrial natriuretic factor.
C L Huang, … , L K Johnson, M G Cogan
C L Huang, … , L K Johnson, M G Cogan
Published February 1, 1985
Citation Information: J Clin Invest. 1985;75(2):769-773. https://doi.org/10.1172/JCI111759.
View: Text | PDF
Research Article

Renal mechanism of action of rat atrial natriuretic factor.

  • Text
  • PDF
Abstract

There has been conflict as to whether crude extracts of atrial natriuretic factor increase renal solute excretion by a hemodynamic mechanism or by direct inhibition of tubular transport. To investigate this issue, seven rats were studied during a euvolemic control period and following continuous administration of pure, synthetic 24 amino acid atrial natriuretic factor. A 10-25-fold increase in urinary sodium and chloride excretion occurred with a brisk kaliuresis but little bicarbonaturia. Atrial natriuretic factor caused whole kidney glomerular filtration rate to increase from 1.17 +/- 0.04 to 1.52 +/- 0.07 ml/min (P less than 0.005). A parallel increase in single nephron glomerular filtration rate, from 34 +/- 1 to 44 +/- 2 nl/min (P less than 0.001), and from 26 +/- 1 to 37 +/- 2 nl/min (P less than 0.005) was measured at the end-proximal and early distal nephron sites, respectively. Appropriate for the higher flows were an increase in absolute proximal and loop reabsorptive rates for bicarbonate, chloride, and water, with a slight decrease in fractional solute and volume reabsorption in proximal and loop segments. To exclude the possibility that atrial natriuretic factor increased filtration rate only in anesthetized animals, eight unanesthetized rats were studied. Glomerular filtration rate increased by 45%, from 2.04 +/- 0.17 to 2.97 +/- 0.27 ml/min (P less than 0.005) without significant change in renal plasma flow, as reflected by 14C-para-aminohippurate clearance (5.4 +/- 0.5-5.6 +/- 0.9 ml/min). The clearance and micropuncture data did not preclude changes in relative blood flow distribution to or in transport by deep nephron segments. In conclusion, atrial natriuretic factor appears to increase renal solute excretion predominantly by a hemodynamic mechanism without directly inhibiting superficial tubular transport.

Authors

C L Huang, J Lewicki, L K Johnson, M G Cogan

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 144 3
PDF 58 12
Scanned page 180 1
Citation downloads 63 0
Totals 445 16
Total Views 461
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts