Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 4

See more details

Posted by 1 X users
Referenced in 3 patents
19 readers on Mendeley
  • Article usage
  • Citations to this article (75)

Advertisement

Research Article Free access | 10.1172/JCI111741

Cytosine arabinoside transport and metabolism in acute leukemias and T cell lymphoblastic lymphoma.

J S Wiley, J Taupin, G P Jamieson, M Snook, W H Sawyer, and L R Finch

Find articles by Wiley, J. in: PubMed | Google Scholar

Find articles by Taupin, J. in: PubMed | Google Scholar

Find articles by Jamieson, G. in: PubMed | Google Scholar

Find articles by Snook, M. in: PubMed | Google Scholar

Find articles by Sawyer, W. in: PubMed | Google Scholar

Find articles by Finch, L. in: PubMed | Google Scholar

Published February 1, 1985 - More info

Published in Volume 75, Issue 2 on February 1, 1985
J Clin Invest. 1985;75(2):632–642. https://doi.org/10.1172/JCI111741.
© 1985 The American Society for Clinical Investigation
Published February 1, 1985 - Version history
View PDF
Abstract

Cytosine arabinoside (araC) has proven efficacy in acute myeloid leukemia (AML), but its place in the treatment of acute lymphoblastic leukemia (ALL) and T lymphoblastic lymphoma is uncertain. The therapeutic potential of araC has been assessed in patients with AML, ALL, and T lymphoblastic lymphoma by measuring the conversion of araC to its active metabolite, the 5'-triphosphate of araC (araCTP), in purified blasts from patients as well as in normal polymorphs and lymphocytes. In all leukemias, araCTP was the major intracellular metabolite of araC. The highest araCTP formation was in blasts from T lymphoblastic lymphoma, which formed threefold more nucleotide than myeloblasts, and in turn myeloblasts formed twofold more araCTP than lymphoblasts from ALL. The mean araCTP formation in myeloblasts was sixfold greater than polymorphs, but in contrast, lymphoblasts and lymphocytes formed low and similar amounts of this nucleotide. Reasons for the sixfold range in araCTP accumulation in the various leukemic blasts were studied. The mean size of myeloblasts was 35-70% larger than lymphoblasts when compared on the basis of protein or intracellular water content, but T lymphoblastic lymphoma blasts and lymphoblasts were the same size. Activities of deoxycytidine kinase, deoxycytidylate deaminase, and pyrimidine nucleoside monophosphate kinase were not different between any of the leukemic cell types. The number of nucleoside transport sites on blasts was estimated by measuring the equilibrium binding of [3H]nitrobenzylthioinosine (NBMPR), which binds with high affinity to the transporter. Scatchard analysis yielded mean values of 27,500 sites/cell for T lymphoblastic lymphoma blasts, 10,000 sites/cell for myeloblasts, and 2,300 sites/cell for lymphoblasts. Our previous work has shown that araC influx correlates with the maximum number of 3H-NBMPR binding sites in leukemic and normal white cells. A strong correlation was observed between the number of nucleoside transport sites per leukemic blast cell and the accumulation of intracellular araCTP from extracellular araC at 1 microM. Membrane transport of araC at the low concentrations (approximately 1 microM), which are achieved therapeutically, is a major rate-limiting step in its conversion to araCTP by leukemic blast cells. Myeloblasts form more araCTP than lymphoblasts because of both higher nucleoside transport capacity and larger cell size. The highest nucleoside transport capacity and largest conversion of araC to araCTP is in T lymphoblastic lymphoma, which suggests that araC may be effective in the treatment of this disease.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 632
page 632
icon of scanned page 633
page 633
icon of scanned page 634
page 634
icon of scanned page 635
page 635
icon of scanned page 636
page 636
icon of scanned page 637
page 637
icon of scanned page 638
page 638
icon of scanned page 639
page 639
icon of scanned page 640
page 640
icon of scanned page 641
page 641
icon of scanned page 642
page 642
Version history
  • Version 1 (February 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 4
  • Article usage
  • Citations to this article (75)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
Referenced in 3 patents
19 readers on Mendeley
See more details