Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (112)

Advertisement

Research Article Free access | 10.1172/JCI111682

Sinusoidal efflux of glutathione in the perfused rat liver. Evidence for a carrier-mediated process.

M Ookhtens, K Hobdy, M C Corvasce, T Y Aw, and N Kaplowitz

Find articles by Ookhtens, M. in: PubMed | Google Scholar

Find articles by Hobdy, K. in: PubMed | Google Scholar

Find articles by Corvasce, M. in: PubMed | Google Scholar

Find articles by Aw, T. in: PubMed | Google Scholar

Find articles by Kaplowitz, N. in: PubMed | Google Scholar

Published January 1, 1985 - More info

Published in Volume 75, Issue 1 on January 1, 1985
J Clin Invest. 1985;75(1):258–265. https://doi.org/10.1172/JCI111682.
© 1985 The American Society for Clinical Investigation
Published January 1, 1985 - Version history
View PDF
Abstract

Turnover of hepatic glutathione in vivo in the rat is almost entirely accounted for by cellular efflux, of which 80-90% is sinusoidal. Thus, sinusoidal efflux play a major quantitative role in homeostasis of hepatic glutathione. Som preliminary observations from our laboratory (1983. J. Pharmacol. Exp. Ther. 224:141-147.) and circumstantial evidence in the literature seemed to imply that the raising of the hepatic glutathione concentration above normal was not accompanied by a rise in the rate of sinusoidal efflux. Based on these observations, we hypothesized that the sinusoidal efflux was probably a saturable process and that at normal levels of hepatic glutathione the efflux behaved as a zero-order process (near-saturation). We tested our hypothesis by the use of isolated rat livers perfused in situ, single pass, with hemoglobin-free, oxygenated buffer medium at pH 7.4 and 37 degrees C. Preliminary experiments established a range of perfusion rates (3-4 ml/min per g) for adequacy of oxygenation, lack of cell injury, and minimization of variability contributed by perfusion rates. Hepatic glutathione was lowered to below normal by a 48-h fast, diethylmaleate (0.1-1.0 ml/kg i.p.), and buthionine sulfoximine (8 mmol/kg i.p.), and raised to above normal by 3-methylcholanthrene (20 mg/kg x 3 d i.p.) and cobalt chloride (0.05-0.27 g/kg-1 subcutaneously). Steady state sinusoidal efflux from each liver was measured over a 1-h perfusion, during which the coefficient of variation of glutathione in perfusates stayed within 10%. Hepatic glutathione efflux as a function of hepatic concentration was characterized by saturable kinetics with sigmoidal (non-hyperbolic) features. The data were fitted best with the Hill model and the following parameter values were estimated: Vmax = 20 nmol/min per g, Km = 3.2 mumol/g, and n = 3 binding/transport sites. The efflux could be inhibited reversibly by sulfobromophthalein-glutathione conjugate but was not affected by the addition of glutathione to the perfusion medium. The results support our hypothesis that sinusoidal efflux of glutathione is near saturation (approximately equal to 80% of Vmax) at normal (fed and fasted) liver glutathione concentrations. The phenomenon of saturability coupled with the ability to inhibit the efflux leads us to propose that sinusoidal efflux from hepatocytes appears to be a carrier-mediated process. Some recent studies by others, using sinusoidal membrane-enriched vesicles, also support these conclusions.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 258
page 258
icon of scanned page 259
page 259
icon of scanned page 260
page 260
icon of scanned page 261
page 261
icon of scanned page 262
page 262
icon of scanned page 263
page 263
icon of scanned page 264
page 264
icon of scanned page 265
page 265
Version history
  • Version 1 (January 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (112)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts