Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (15)

Advertisement

Research Article Free access | 10.1172/JCI111584

Furosemide inhibits glucose transport in isolated rat adipocytes via direct inactivation of carrier proteins.

D B Jacobs, B K Mookerjee, and C Y Jung

Find articles by Jacobs, D. in: PubMed | Google Scholar

Find articles by Mookerjee, B. in: PubMed | Google Scholar

Find articles by Jung, C. in: PubMed | Google Scholar

Published November 1, 1984 - More info

Published in Volume 74, Issue 5 on November 1, 1984
J Clin Invest. 1984;74(5):1679–1685. https://doi.org/10.1172/JCI111584.
© 1984 The American Society for Clinical Investigation
Published November 1, 1984 - Version history
View PDF
Abstract

Furosemide inhibits 3-O-methyl-D-glucose equilibrium flux in isolated adipocytes. The inhibition is saturable with an increasing concentration of furosemide and shows a noncompetitive type of kinetics. Both basal and insulin-stimulated fluxes are equally affected by the inhibition. Hydrochlorothiazide and piretanide also inhibit the flux with a similar potency, whereas bumetanide, a more potent diuretic, is much less potent. To understand the molecular basis of this inhibition, effects of furosemide on the glucose-sensitive cytochaslasin B binding activities of adipocytes were studied. Furosemide inhibits the glucose-sensitive cytochalasin B binding of both microsomal and plasma membrane preparations. For both preparations, the inhibition is time dependent and only slowly reversible, is saturable with an increasing concentration of furosemide, shows a noncompetitive type of kinetics with apparent Ki (the inhibitor concentration that gives the half-maximum effect) of 3.5 and 0.7 mM after 2 and 18 h incubation, respectively, and is essentially identical between the basal and insulin-stimulated adipocytes. The inhibition develops with a first-order rate constant of approximately 0.12/h at 4 degrees C. These results indicate that furosemide inhibits glucose transport in adipocytes by directly inactivating transport carriers of both plasma membranes and microsomal reserve pool. This inactivation of glucose carrier may play a part in the diuretic-induced glucose intolerance frequently observed during diuretic therapy.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1679
page 1679
icon of scanned page 1680
page 1680
icon of scanned page 1681
page 1681
icon of scanned page 1682
page 1682
icon of scanned page 1683
page 1683
icon of scanned page 1684
page 1684
icon of scanned page 1685
page 1685
Version history
  • Version 1 (November 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (15)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts