Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 15

See more details

Blogged by 1
Referenced in 5 patents
Referenced in 5 Wikipedia pages
21 readers on Mendeley
  • Article usage
  • Citations to this article (137)

Advertisement

Research Article Free access | 10.1172/JCI111578

Complex formation of platelet thrombospondin with plasminogen. Modulation of activation by tissue activator.

R L Silverstein, L L Leung, P C Harpel, and R L Nachman

Find articles by Silverstein, R. in: JCI | PubMed | Google Scholar

Find articles by Leung, L. in: JCI | PubMed | Google Scholar

Find articles by Harpel, P. in: JCI | PubMed | Google Scholar

Find articles by Nachman, R. in: JCI | PubMed | Google Scholar

Published November 1, 1984 - More info

Published in Volume 74, Issue 5 on November 1, 1984
J Clin Invest. 1984;74(5):1625–1633. https://doi.org/10.1172/JCI111578.
© 1984 The American Society for Clinical Investigation
Published November 1, 1984 - Version history
View PDF
Abstract

Thrombospondin (TSP), a multifunctional alpha-granule glycoprotein of platelets, binds fibrinogen, fibronectin, heparin, and histidine-rich glycoprotein and thus may play an important role in regulating thrombotic influences at vessel surfaces. In this study we have demonstrated that purified human platelet TSP formed a complex with purified human plasminogen (Plg). Complex formation was detected by rocket immunoelectrophoresis of mixtures of the purified radiolabeled proteins. Significant complex formation of fluid-phase Plg with adsorbed TSP was also demonstrated by enzyme-linked immunosorbent assay (ELISA). The complex formation was specific, saturable, and inhibited by excess fluid-phase TSP, with an apparent KD of approximately 35 nM. In both ELISA and rocket immunoelectrophoresis systems, complex formation was inhibited by 10 mM epsilon-amino-n-caproic acid, implying that there is a role for the lysine binding sites of Plg in mediating the interaction. TSP also formed a complex with plasmin as detected by ELISA but did not directly inhibit plasmin activity measured with a synthetic fluorometric substrate or with a 125I-fibrin plate assay. TSP, when incubated with Plg before addition to 125I-fibrin plates significantly inhibited the generation of plasmin activity by tissue plasminogen activator (TPA) in a manner that was calcium dependent. A kinetic study of Plg activation by TPA in the presence of TSP demonstrated that Michaelis-Menten kinetics were followed and that TSP acted as a noncompetitive inhibitor. These studies support the hypothesis that TSP, acting as a multifunctional regulator in focal areas of active hemostasis, could serve as a prothrombotic influence, leading to increased deposition of fibrin.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1625
page 1625
icon of scanned page 1626
page 1626
icon of scanned page 1627
page 1627
icon of scanned page 1628
page 1628
icon of scanned page 1629
page 1629
icon of scanned page 1630
page 1630
icon of scanned page 1631
page 1631
icon of scanned page 1632
page 1632
icon of scanned page 1633
page 1633
Version history
  • Version 1 (November 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 15
  • Article usage
  • Citations to this article (137)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Blogged by 1
Referenced in 5 patents
Referenced in 5 Wikipedia pages
21 readers on Mendeley
See more details