Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Human multiple organ-reactive monoclonal autoantibody recognizes growth hormone and a 35,000-molecular weight protein.
J Satoh, … , P R McClintock, A L Notkins
J Satoh, … , P R McClintock, A L Notkins
Published October 1, 1984
Citation Information: J Clin Invest. 1984;74(4):1526-1531. https://doi.org/10.1172/JCI111566.
View: Text | PDF
Research Article

Human multiple organ-reactive monoclonal autoantibody recognizes growth hormone and a 35,000-molecular weight protein.

  • Text
  • PDF
Abstract

By fusing peripheral leukocytes from a patient with insulin-dependent diabetes with mouse myeloma cells, a heterohybridoma was isolated that, for over one year, has secreted a human monoclonal autoantibody, designated MOR-h1 (multiple organ-reactive human 1). This antibody reacts with antigens in several endocrine organs including the pituitary, thyroid, stomach, and pancreas. By double immunofluorescence, MOR-h1 was found to react specifically with growth hormone (GH)-containing cells in the anterior pituitary and, by enzyme-linked immunosorbent assay, MOR-h1 was shown to react with both natural and biosynthetic GH. Absorption experiments revealed that GH could remove the capacity of MOR-h1 to react not only with cells in the anterior pituitary, but also with cells in the thyroid, stomach, and pancreas. The demonstration with hyperimmune serum that these organs do not contain GH indicated that MOR-h1 was reacting with a different molecule(s) in these organs. By passing extracts of pituitary, thyroid, and stomach through an MOR-h1 affinity column and analyzing the eluted antigens by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a 35,000-mol wt polypeptide was isolated from each of these organs. In addition, a 21,500-mol wt polypeptide with an electrophoretic mobility identical to purified human GH was isolated from the pituitary, but not the other organs. It is concluded that MOR-h1 reacts with a 35,000-mol wt polypeptide present in the pituitary, thyroid, and stomach and that this antibody also recognizes a determinant on GH.

Authors

J Satoh, K Essani, P R McClintock, A L Notkins

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts