Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Complement depletion accelerates the clearance of immune complexes from the circulation of primates.
F J Waxman, … , D J Birmingham, J M Taguiam
F J Waxman, … , D J Birmingham, J M Taguiam
Published October 1, 1984
Citation Information: J Clin Invest. 1984;74(4):1329-1340. https://doi.org/10.1172/JCI111543.
View: Text | PDF
Research Article

Complement depletion accelerates the clearance of immune complexes from the circulation of primates.

  • Text
  • PDF
Abstract

Binding of immune complexes (IC) to erythrocytes in vitro is the result of interaction between C3b sites on the IC, and complement receptors type I (CRI) expressed on primate erythrocytes. Recent evidence indicates that primate erythrocytes can also rapidly bind large, preformed IC in vivo. This study was undertaken to determine if the binding of IC to baboon erythrocytes in vivo is complement dependent and to examine the effect of complement depletion on IC clearance from the circulation. The results indicate that complement depletion in vivo reduced the binding of IC to erythrocytes. There was relatively little binding of IC to leukocytes in both the complement-depleted and complement-repleted condition. Thus, the majority of IC not bound to erythrocytes remained free in the plasma and, consequently, IC infusion during the complement-depleted state resulted in increased plasma IC concentrations. This was associated with a rapid disappearance of IC from the circulation. By contrast, in the normal or complement-repleted state, a large fraction of the IC became bound to erythrocytes during IC infusion, which resulted in lower plasma IC concentrations. Under these conditions, a more gradual rate of disappearance of IC from the circulation was observed. The relatively abrupt clearance of IC from the circulation in the complement-depleted state could not be accounted for by increased hepatic or splenic uptake. These data indicate that, in contrast to previous studies in nonprimates, complement depletion in primates results in accelerated removal of IC from the circulation. This suggests that factors such as hypocomplementemia and deficient expression of erythrocyte CRI, which are known to occur in certain IC-mediated diseases, may promote IC uptake by organs vulnerable to IC-mediated injury.

Authors

F J Waxman, L A Hebert, J B Cornacoff, M E VanAman, W L Smead, E H Kraut, D J Birmingham, J M Taguiam

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 133 14
PDF 45 19
Scanned page 315 4
Citation downloads 39 0
Totals 532 37
Total Views 569
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts