Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (54)

Advertisement

Research Article Free access | 10.1172/JCI111474

Regulation by insulin of myocardial glucose and fatty acid metabolism in the conscious dog.

E J Barrett, R G Schwartz, C K Francis, and B L Zaret

Find articles by Barrett, E. in: PubMed | Google Scholar

Find articles by Schwartz, R. in: PubMed | Google Scholar

Find articles by Francis, C. in: PubMed | Google Scholar

Find articles by Zaret, B. in: PubMed | Google Scholar

Published September 1, 1984 - More info

Published in Volume 74, Issue 3 on September 1, 1984
J Clin Invest. 1984;74(3):1073–1079. https://doi.org/10.1172/JCI111474.
© 1984 The American Society for Clinical Investigation
Published September 1, 1984 - Version history
View PDF
Abstract

In vivo small doses of insulin inhibit lipolysis, lower plasma FFA, and stimulate glucose disposal. Lowering of plasma FFA, either in the absence of a change in insulin or during combined hyperglycemia and hyperinsulinemia, promotes glucose uptake by heart muscle in vivo. In the isolated perfused heart, large doses of insulin directly stimulate heart glucose uptake. To assess the effect of physiological elevations of plasma insulin upon myocardial glucose and FFA uptake in vivo independent of changes in plasma substrate concentration, we measured arterial and coronary sinus concentrations of glucose, lactate, and FFA, and coronary blood flow in conscious dogs during a 30 min basal and a 2 h experimental period employing three protocols: (a) euglycemic hyperinsulinemia (insulin clamp, n = 5), (b) euglycemic hyperinsulinemia with FFA replacement (n = 5), (c) hyperglycemic euinsulinemia (hyperglycemic clamp with somatostatin, n = 5). In group 1, hyperinsulinemia (insulin = 73 +/- 13 microU/ml) stimulated heart glucose uptake (7.3 +/- 4.4 vs. 28.2 +/- 2.8 mumol/min, P less than 0.002), lowered plasma FFA levels by 80% (P less than 0.05), and decreased heart FFA uptake (28.4 +/- 4 vs. 1.5 +/- 0.9, P less than 0.01). When the fall in plasma FFA was prevented by FFA infusion (group 2), hyperinsulinemia (86 +/- 10 microU/ml) provoked a lesser (P less than 0.05) stimulation of glucose uptake (delta = 8.2 +/- 4.2 mumol/min) than in group 1, and there was no significant change in FFA uptake (25.3 +/- 16 vs. 16.5 +/- 4). Hyperglycemia (plasma glucose = 186 +/- 8 mg/100 ml) during somatostatin infusion resulted in only a small rise in plasma insulin (delta = 12 +/- 7 microU/ml), and although plasma FFA tended to decline, heart glucose uptake did not rise significantly (delta = 5.5 +/- 3.2 mumol/min, P = NS). There was no significant change in coronary blood flow during any of the three study protocols. We conclude that, in the dog, insulin at physiologic concentrations: (a) stimulates heart glucose uptake, both directly and by suppressing the plasma FFA concentration, and (b) does not alter coronary blood flow. Hyperglycemia per se has little effect on heart glucose uptake.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1073
page 1073
icon of scanned page 1074
page 1074
icon of scanned page 1075
page 1075
icon of scanned page 1076
page 1076
icon of scanned page 1077
page 1077
icon of scanned page 1078
page 1078
icon of scanned page 1079
page 1079
Version history
  • Version 1 (September 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (54)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts