Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (19)

Advertisement

Research Article Free access | 10.1172/JCI111430

Regulation of acylcoenzyme A. Cholesterol acyltransferase and 3-hydroxy-3-methylglutaryl coenzyme A reductase activity by lipoproteins in the intestine of parabiont rats.

B H Purdy and F J Field

Find articles by Purdy, B. in: JCI | PubMed | Google Scholar

Find articles by Field, F. in: JCI | PubMed | Google Scholar

Published August 1, 1984 - More info

Published in Volume 74, Issue 2 on August 1, 1984
J Clin Invest. 1984;74(2):351–357. https://doi.org/10.1172/JCI111430.
© 1984 The American Society for Clinical Investigation
Published August 1, 1984 - Version history
View PDF
Abstract

Parabiont rats were used to study the regulation of intestinal cholesterol synthesis (3-hydroxy-3-methylglutaryl coenzyme A [HMG-CoA] reductase activity) and esterification (acylcoenzyme A/cholesterol acyltransferase [ACAT] activity) by lipoproteins and micellar cholesterol. The parabiont rat model offers a unique way to observe changes in cholesterol metabolism in the intestine, independently of luminal factors. In one group of six surgically joined pairs, one animal was fed rat chow and 0.1% propylthiouracil (PTU). Its joined mate was fed rat chow, 0.1% PTU, 5% lard, and 0.3% taurocholic acid. In another group of five pairs, one rat was fed rat chow, 0.1% PTU, 5% lard, 0.3% taurocholic acid, plus 1% cholesterol. Its joined mate was fed the same diet except the cholesterol was deleted. Serum cholesterol changes were equal between members of a given pair, attesting to their common circulation. The administration of PTU itself caused a significant elevation of serum cholesterol. When one parabiont ingested cholesterol, serum cholesterol concentrations increased significantly for both pair members compared with control pairs not ingesting cholesterol. Hepatic and intestinal HMG-CoA reductase activities were significantly decreased in rats fed the diet containing cholesterol. ACAT activities in both organs were markedly increased. This supports previous data that suggest that dietary or luminal cholesterol affects both HMG-CoA reductase and ACAT activity in the small intestine. Moreover, in rats that were hypercholesterolemic but not ingesting dietary cholesterol, hepatic and intestinal reductase activities were decreased and ACAT activities were increased compared with the control animals. Intestinal microsomal cholesterol content was increased only in rats fed cholesterol. No changes in intestinal microsomal cholesterol were observed in the other animals. The data suggest that intestinal HMG-CoA reductase and ACAT activities are regulated by plasma lipoproteins independently of luminal factors. This nonluminal regulatory effect occurs without a measurable contribution to the intestinal microsomal cholesterol pool.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 351
page 351
icon of scanned page 352
page 352
icon of scanned page 353
page 353
icon of scanned page 354
page 354
icon of scanned page 355
page 355
icon of scanned page 356
page 356
icon of scanned page 357
page 357
Version history
  • Version 1 (August 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (19)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts