Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 6

See more details

Referenced in 1 policy sources
Referenced in 3 patents
39 readers on Mendeley
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111422

Suppression by diets rich in fish oil of very low density lipoprotein production in man.

P J Nestel, W E Connor, M F Reardon, S Connor, S Wong, and R Boston

Find articles by Nestel, P. in: PubMed | Google Scholar

Find articles by Connor, W. in: PubMed | Google Scholar

Find articles by Reardon, M. in: PubMed | Google Scholar

Find articles by Connor, S. in: PubMed | Google Scholar

Find articles by Wong, S. in: PubMed | Google Scholar

Find articles by Boston, R. in: PubMed | Google Scholar

Published July 1, 1984 - More info

Published in Volume 74, Issue 1 on July 1, 1984
J Clin Invest. 1984;74(1):82–89. https://doi.org/10.1172/JCI111422.
© 1984 The American Society for Clinical Investigation
Published July 1, 1984 - Version history
View PDF
Abstract

The highly polyunsaturated fatty acids in fish oils lower the plasma triglyceride concentration. We have studied the effect of a diet rich in fish oil on the rate of production of the triglyceride-transporting very low density lipoprotein (VLDL). Seven subjects, five normal and two with hypertriglyceridemia received up to 30% of daily energy needs from a fish oil preparation that was rich in eicosapentaenoic acid and docosahexaenoic acid, omega-3 fatty acids with five and six double bonds, respectively. Compared with a diet similarly enriched with safflower oil (in which the predominant fatty acid is the omega-6 linoleic acid, with two double bonds), the fish oil diet lowered VLDL lipids and B apoprotein concentrations profoundly. High density lipoprotein lipids and A1 apoprotein were also lowered, but the effect on low density lipoprotein (LDL) concentration was inconsistent. The daily production or flux of VLDL apoprotein B, calculated from reinjected autologous 125I-labeled lipoprotein, was substantially less in six subjects studied after 3 wk of fish oil, compared with after safflower oil. This effect on flux was more consistent than that on the irreversible fractional removal rate, which was increased in the four normolipidemic but inconsistent in the hypertriglyceridemic subjects. This suggests that fish oil reduced primarily the production of VLDL. The daily production of VLDL triglyceride, calculated from the kinetics of the triglyceride specific radioactivity-time curves after [3H]glycerol was injected, also showed very substantial reductions in five subjects studied. The marked suppression in VLDL apoprotein B and VLDL triglyceride formation was found not to be due to diminished plasma total free fatty acid or plasma eicosapentaenoic flux, calculated during constant infusions of [14C]eicosapentaenoic acid and [3H]oleic acid in four subjects. In two subjects there was presumptive evidence for substantial independent influx of LDL during the fish oil diet, based on the precursor-product relationship between the intermediate density lipoprotein and LDL apoprotein B specific radioactivity-time curves.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 82
page 82
icon of scanned page 83
page 83
icon of scanned page 84
page 84
icon of scanned page 85
page 85
icon of scanned page 86
page 86
icon of scanned page 87
page 87
icon of scanned page 88
page 88
icon of scanned page 89
page 89
Version history
  • Version 1 (July 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 6
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 policy sources
Referenced in 3 patents
39 readers on Mendeley
See more details