Amyloid fibril protein in patients with familial amyloidotic polyneuropathy is known to be chemically related to transthyretin (TTR), the plasma protein that is usually referred to as prealbumin. A genetically abnormal TTR may be involved in this disease. Studies were conducted on amyloid fibril protein (AFp) isolated from tissues of two Portuguese patients who died with familial amyloidosis, and on TTR isolated from sera of patients with this disease. AFp, purified by affinity chromatography on retinol-binding protein linked to Sepharose, resembled plasma TTR in forming a stable tetrameric structure, and in its binding affinities for both thyroxine and retinol-binding protein. The structural studies included: (a) comparative peptide mappings by reverse-phase high performance liquid chromatography (HPLC) after trypsin digestion; (b) cyanogen bromide cleavage studies; and (c) amino acid microsequence analysis of selected tryptic and CNBr peptides. On the basis of the known amino acid sequence of TTR, comparative tryptic peptide maps showed the presence of a single aberrant tryptic peptide (peptide 4, residues 22-34) in AFp as compared with TTR. This aberrant peptide contained a methionine residue, not present in normal tryptic peptide 4. CNBr cleavage of AFp produced two extra peptide fragments, which were demonstrated, respectively, by HPLC analysis and by sodium dodecyl sulfate-gel electrophoresis. Sequence analyses indicated the presence of a methionine-for-valine substitution at position 30 in AFp as compared with TTR. Thus, the purified amyloid fibril protein comprised a TTR variant with a methionine-forvaline substitution at position 30. A single nucleotide change in a possible codon for valine 30 could explain the substitution. The variant TTR was also present in the TTR isolated from the pooled sera of amyloidoses patients, together with larger (four- to six-fold) amounts of the normal TTR. Thus, in these patients, the variant TTR was circulating in plasma, along with larger amounts of normal TTR. We suggest that the variant TTR represents the specific biochemical cause of the disease, and that this abnormal form of TTR selectively deposits in tissues as the amyloid characteristic of the disease.
M J Saraiva, S Birken, P P Costa, D S Goodman
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 411 | 19 |
63 | 56 | |
Figure | 0 | 1 |
Scanned page | 723 | 18 |
Citation downloads | 65 | 0 |
Totals | 1,262 | 94 |
Total Views | 1,356 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.