Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111356

Lithocholate glucuronide is a cholestatic agent.

D G Oelberg, M V Chari, J M Little, E W Adcock, and R Lester

Find articles by Oelberg, D. in: PubMed | Google Scholar

Find articles by Chari, M. in: PubMed | Google Scholar

Find articles by Little, J. in: PubMed | Google Scholar

Find articles by Adcock, E. in: PubMed | Google Scholar

Find articles by Lester, R. in: PubMed | Google Scholar

Published June 1, 1984 - More info

Published in Volume 73, Issue 6 on June 1, 1984
J Clin Invest. 1984;73(6):1507–1514. https://doi.org/10.1172/JCI111356.
© 1984 The American Society for Clinical Investigation
Published June 1, 1984 - Version history
View PDF
Abstract

Lithocholic acid and its taurine, glycine, and sulfate derivatives are potent cholestatic agents. Lithocholate glucuronide is present in the plasma and urine of patients with cholestatic syndromes, but little is known of its metabolism, excretion, and cholestatic potential. [3 beta-3H]lithocholate 3-O-beta-D-glucuronide was synthesized, and chemical and radiochemical purity were established. The aqueous solubility of lithocholate glucuronide was determined and found to be greater than that of lithocholic acid or several of its derivatives. In the range of concentrations examined, calcium ions precipitated lithocholate glucuronide stoichiometrically. The material was administered to rats prepared with an external biliary fistula. When 17-25 micrograms quantities were administered, 89.1 +/- 4.5% (mean +/- SEM) of the radiolabel was secreted in bile within the first 20 h after administration, the major fraction being secreted in less than 20 min. Four-fifths of the radiolabeled material in bile was the administered unaltered parent compound, while a minor fraction consisted of a more polar derivative(s). We showed that increasing biliary concentrations of more polar derivatives were observed with milligram doses of [3H]lithocholate glucuronide, and with time after the administration of these loading doses. Milligram doses of [3H]lithocholate glucuronide resulted in partial or complete cholestasis. When induced cholestasis was partial, secretion in bile remained the primary excretory route (82.5-105.6% recovery in bile), while, when complete cholestasis was induced, wide tissue distribution of radiolabel was observed. Cholestasis developed rapidly during infusion of [3H]lithocholate glucuronide. Bile flow was diminished within 10-20 min of the start of an infusion of 0.05 mumol, 100 g-1 body weight, minute-1, administered concomitantly with an equimolar infusion of taurocholate. The results establish that lithocholate glucuronide exerts cholestatic effects comparable to those exerted by unconjugated lithocholic acid.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1507
page 1507
icon of scanned page 1508
page 1508
icon of scanned page 1509
page 1509
icon of scanned page 1510
page 1510
icon of scanned page 1511
page 1511
icon of scanned page 1512
page 1512
icon of scanned page 1513
page 1513
icon of scanned page 1514
page 1514
Version history
  • Version 1 (June 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts