A platelet aggregometer was adapted for the simultaneous measurement of perpendicular light scattering in addition to light transmission. The addition of chemoattractants to polymorphonuclear leukocyte suspensions evoked a single wave of increased light transmission, whereas the perpendicular scattering measurement demonstrated a previously unrecognized biphasic response. The first perpendicular scattering response had no detectable latency and peaked at 10 +/- 1 s, then decayed rapidly. The second response peaked at 40 +/- 5 s, and decayed over several minutes. The dose-response curve of chemoattractants for inducing the rapid (10 +/- 1 s) perpendicular scattering peak corresponded to that which initiated chemotaxis. Initiation of the slow (40 +/- 5 s) peak required 10-fold higher amounts of chemoattractants, and the dose-response curve correlated with the induction of lysosomal enzyme secretion and superoxide anion production. Low doses of aliphatic alcohols, which have been shown to enhance chemotaxis but to inhibit secretion and superoxide anion production, abolished the slow perpendicular light-scattering response but left the fast response intact. Stimulants of secretion induced only slow and prolonged responses that were best observed in transmission measurements. In an attempt to resolve the origin of the light-scattering responses, the morphological changes of polymorphonuclear leukocytes were examined microscopically. Neither aggregation nor morphological whole cell polarization could be correlated with changes in light transmission or perpendicular scattering, which suggested that the source of scattering is of subcellular dimensions. The rapid perpendicular light-scattering response of polymorphonuclear leukocytes to chemoattractants appears to record an initial event in the stimulus-response coupling, and its measurement should provide a useful new tool for the study of leukocyte function. The biphasic nature of the light-scattering responses to chemoattractants, moreover, correlates with the dual regulation of the chemotactic and secretory responses of leukocytes.
I Yuli, R Snyderman
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 93 | 1 |
55 | 19 | |
Figure | 0 | 1 |
Scanned page | 353 | 0 |
Citation downloads | 56 | 0 |
Totals | 557 | 21 |
Total Views | 578 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.