Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Glucocorticoids modulate macrophage surface oligosaccharides and their bone binding activity.
Z Bar-Shavit, … , K R Stone, S L Teitelbaum
Z Bar-Shavit, … , K R Stone, S L Teitelbaum
Published May 1, 1984
Citation Information: J Clin Invest. 1984;73(5):1277-1283. https://doi.org/10.1172/JCI111329.
View: Text | PDF
Research Article Article has an altmetric score of 3

Glucocorticoids modulate macrophage surface oligosaccharides and their bone binding activity.

  • Text
  • PDF
Abstract

The circumstantial evidence that indicates that glucocorticoids (GC) may stimulate osteoclastic resorption in vivo has recently found support in observations that demonstrate that these compounds effectively increase the activity of isolated resorptive cells (osteoclasts, macrophage polykaryons, and elicited macrophages [MO] ) in vitro. Data are presented here that indicate that this stimulation by GC is due to an enhancement of the initial stage of the resorption process, the attachment of cells to bone, and that this is caused by alterations of cell surface oligosaccharides. Specifically, dexamethasone and cortisol enhance by 80% the attachment of MO to bone surfaces in a dose dependent manner but do not alter or reduce the binding of these cells to other surfaces (plastic, collagen, and hydroxyapatite crystals). The effect of GC on cell-bone attachment is blocked by the glycosylation inhibitor, tunicamycin, and the glycosylation modifier, swainsonine; this demonstrates that asparagine-linked oligosaccharides are involved in the stimulatory process. Flow cytometric analysis of GC-treated cells using a panel of fluoresceinated lectins confirms this by indicating a selective, enhanced exposure of plasma membrane-associated N-acetylglucosamine and N-acetylgalactosamine residues, sugars we have previously shown to be pivotal in MO-bone binding. Finally, progesterone, a known GC antagonist, blocks GC-stimulated resorption, macrophage-bone binding, and membrane oligosaccharide modification, presumably by competing for the GC receptor. Progesterone alone alters none of these processes. Thus, GC stimulates the resorptive activity of macrophages by enhancing the initial events in the degradative process (cell-bone binding) and does so, apparently, via receptor-mediator alteration of cell surface glycoproteins.

Authors

Z Bar-Shavit, A J Kahn, L E Pegg, K R Stone, S L Teitelbaum

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 121 2
PDF 39 15
Scanned page 224 5
Citation downloads 57 0
Totals 441 22
Total Views 463
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 5 patents
5 readers on Mendeley
See more details