Glucagon receptor levels, glucagon-stimulated and other forms of adenylyl cyclase activity, and regulatory component activity of adenylyl cyclase were determined in hepatic plasma membranes of rats administered streptozotocin without and with insulin to produce varying degrees of hyperglycemia. Receptor levels were assayed by direct binding of the specific probe [125I-Tyr10]-iodoglucagon; regulatory component activity was assayed by the capacity to reconstitute stimulatory regulation in deficient membranes from cyc- S49 murine lymphoma cells. In rats given 150 mg streptozotocin, glucagon stimulation of adenylyl cyclase as well as basal, sodium fluoride, 5' guanylylimidodiphosphate [GMP-P(NH)P] and Mn-dependent activities were reduced 50%, glucagon receptor levels but not affinity were reduced 67%, and regulatory component activity was decreased 50%. In addition, alpha 1-adrenergic receptors and 5'-nucleotidase were similarly reduced in diabetes. However, specific ouabain-inhibitable Na+, K+, ATPase activity was not altered by streptozotocin treatment. The streptozotocin-induced changes were noted within 24 h and became maximal by 120 h after its administration. All of these decreases were partially reversed by in vivo insulin treatment. DNA, cytochrome c oxidase, glucose-6-phosphatase, and N-acetyl-beta-glucosaminidase content in hepatic plasma membrane preparations were not substantially different in diabetic as compared with control animals. The data demonstrate that glucagon-mediated regulation of cyclic AMP formation is deranged in insulin deficiency owing to a combined decrease in receptors, derangement of the coupling mechanism intervening between receptor and adenylyl cyclase, and possibly, an altered basal effector system. Some of these changes appear to reflect a "desensitization-like" phenomenon which may or may not be attributable to the hyperglucagonemia of diabetes mellitus. There also appears to be a concurrent generalized decrease in several but not all plasma membrane receptor and enzymatic proteins. This may be the result of a number of processes among which is the accelerated proteolysis of uncontrolled diabetes.
R R Dighe, F J Rojas, L Birnbaumer, A J Garber
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 97 | 0 |
44 | 22 | |
Scanned page | 403 | 14 |
Citation downloads | 51 | 0 |
Totals | 595 | 36 |
Total Views | 631 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.