Arginine vasopressin (AVP) stimulates ACTH release in man and acts synergistically with synthetic ovine corticotropin-releasing factor (oCRF) in vitro. This study was designed to examine in man the combined effects of synthetic AVP (10 U intramuscularly) and oCRF (1 micrograms/kg intravenously) on ACTH release. Five normal male volunteers participated in five separate experiments: (a) AVP alone; (b) oCRF alone; (c) AVP followed by oCRF 15 min later; (d) simultaneous AVP and oCRF; and (e) insulin-induced hypoglycemia. Plasma immunoreactive ACTH (IR-ACTH) and IR-cortisol were measured for 4 h after injection of each hormone; basal levels for all subjects were less than or equal to 9 +/- 1.2 pg/ml and 4.9 +/- 0.4 micrograms/dl (mean +/- SE), respectively. AVP and oCRF, when given individually, caused rapid rises in IR-ACTH to similar peak levels of 25 +/- 6.6 and 33 +/- 4.6 pg/ml, respectively. AVP given 15 min before oCRF caused a 2.6-fold potentiation of the oCRF response, with a peak IR-ACTH of 85 +/- 4.6 pg/ml. AVP given at the same time as oCRF produced a fourfold potentiation of the peak IR-ACTH response to 132 +/- 11 pg/ml. These ACTH responses were far greater than those previously observed after 30-fold greater doses of oCRF alone. By way of comparison, insulin-induced hypoglycemia caused a peak IR-ACTH of 169 +/- 20 pg/ml. IR-ACTH returned to base line at 60-90 min after AVP alone, whereas the prolonged effect of oCRF was apparent whether it was given alone or in combination with AVP. The mean peak IR-cortisol responses to AVP, oCRF, and AVP given 15 min before oCRF were similar (16.5 +/- 0.9, 16.4 +/- 2.3, and 18.5 +/- 0.8 micrograms/dl, respectively), but the peak IR-cortisol responses to AVP and oCRF given simultaneously and to insulin-induced hypoglycemia were 1.5 and 1.7 times greater, respectively. IR-cortisol returned to base line within 2-3 h after AVP alone, but remained elevated for at least 4 h after oCRF alone or in combination with AVP. These results indicate that AVP acts synergistically with oCRF to release ACTH in man and suggest that AVP may play a physiologic role in modulating the ACTH response mediated by corticotropin-releasing factor.
C R DeBold, W R Sheldon, G S DeCherney, R V Jackson, A N Alexander, W Vale, J Rivier, D N Orth
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 201 | 10 |
52 | 12 | |
Scanned page | 207 | 1 |
Citation downloads | 66 | 0 |
Totals | 526 | 23 |
Total Views | 549 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.