Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111152

Purine metabolism in myeloid precursor cells during maturation. Studies with the HL-60 cell line.

D L Lucas, H K Webster, and D G Wright

Find articles by Lucas, D. in: JCI | PubMed | Google Scholar

Find articles by Webster, H. in: JCI | PubMed | Google Scholar

Find articles by Wright, D. in: JCI | PubMed | Google Scholar

Published December 1, 1983 - More info

Published in Volume 72, Issue 6 on December 1, 1983
J Clin Invest. 1983;72(6):1889–1900. https://doi.org/10.1172/JCI111152.
© 1983 The American Society for Clinical Investigation
Published December 1, 1983 - Version history
View PDF
Abstract

In studies with the human promyelocytic leukemia cell line HL-60, we defined changes in intermediary purine metabolism that appear to contribute to the regulation of terminal maturation in myeloid cells. When HL-60 cells were exposed to compounds that induce maturation, consistent alterations in purine metabolism were found to occur within 24 h of culture. Perturbation of guanosine nucleotide synthesis and decreases of up to 50% in intracellular guanylate pool sizes were associated with the induced maturation of these cells in response to diverse inducing agents. While immature HL-60 cells were observed to synthesize purine nucleotides by both de novo and salvage pathways, the activity of both pathways decreased in cells induced to mature, although the relative contribution of purine salvage increased. Moreover, incorporation of the salvage pathway precursor, [14C]hypoxanthine from the intermediate, inosine monophosphate (IMP), into guanylates was reduced by approximately 65% in induced HL-60 cells, reflecting decreased activity of both hypoxanthine phosphoribosyltransferase and IMP dehydrogenase. When various inhibitors of IMP dehydrogenase (mycophenolic acid, 3-deazaguanosine, and 2-beta-D-ribofuranosylthiazole-4-carboxamide) were evaluated for their effects upon HL-60 cells, each agent was found to induce the cells to mature morphologically and functionally. Like other inducers, these agents decreased HL-60 cell proliferation and caused the cells to acquire an ability to phagocytose opsonized yeast and reduce nitroblue tetrazolium. Each agent reduced intracellular guanosine nucleotide pool sizes and induced HL-60 cell maturation at micromolar concentrations. These observations suggest that the size of intracellular guanosine nucleotide pools, the biosynthesis of guanosine nucleotides, and the activity of IMP dehydrogenase may be central to the regulation of terminal maturation in myeloid cells.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1889
page 1889
icon of scanned page 1890
page 1890
icon of scanned page 1891
page 1891
icon of scanned page 1892
page 1892
icon of scanned page 1893
page 1893
icon of scanned page 1894
page 1894
icon of scanned page 1895
page 1895
icon of scanned page 1896
page 1896
icon of scanned page 1897
page 1897
icon of scanned page 1898
page 1898
icon of scanned page 1899
page 1899
icon of scanned page 1900
page 1900
Version history
  • Version 1 (December 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts