Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111098

Metabolism of estradiol in liver cell culture. Differential responses of C-2 and C-16 oxidations to drugs and other chemicals that induce selective species of cytochrome P-450.

J Schneider, S Sassa, and A Kappas

Find articles by Schneider, J. in: JCI | PubMed | Google Scholar

Find articles by Sassa, S. in: JCI | PubMed | Google Scholar

Find articles by Kappas, A. in: JCI | PubMed | Google Scholar

Published October 1, 1983 - More info

Published in Volume 72, Issue 4 on October 1, 1983
J Clin Invest. 1983;72(4):1420–1426. https://doi.org/10.1172/JCI111098.
© 1983 The American Society for Clinical Investigation
Published October 1, 1983 - Version history
View PDF
Abstract

The oxidative metabolism of estradiol (the natural estrogen 2,3,5(10)-estratriene-3,17 beta-diol) at positions C-2 and C-16 was examined in primary cultures of chick embryo liver cells using estradiol which was labeled with 3H specifically at either the C-2 or C-16 position as the substrate. Oxidation of estradiol by the cultured liver cells was assessed by the release of 3H which accumulated as 3H2O in the culture medium; both C-2 and C-16 oxidative reactions were detectable in the liver cell cultures by this technique. When incubated with a concentration of estradiol substrate close to the Michaelis constant (Km), approximately 45.8 pmol [2-3H]estradiol and 5.0 pmol [16-3H]estradiol/mg protein per minute underwent oxidative metabolism in untreated cells. Total amounts of oxidized product formation after 2 h of incubation were 28 and 5 pmol/mg protein for C-2 and C-16 oxidation, respectively. Treatment of cultures with phenobarbital or 2-propyl-2-isopropylacetamide significantly increased oxidation at C-16 (1.9-fold and 2.6-fold greater than control values, respectively), whereas no significant change in C-16 oxidation was observed after treatment of the cultures with 3-methylcholanthrene, benzo[a]pyrene, or benz[a]anthracene. The latter chemicals, however, were found to increase the extent of oxidation at C-2 significantly (i.e., 1.5-2.2-fold increases over control values). The increase in C-2 oxidation after treatment of cultures with phenobarbital or 2-propyl-2-isopropylacetamide was significantly less than that observed for oxidation at C-16. The apparent Km values for these oxidations in control cultures were 23.5 and 30.3 microM for C-2 and C-16 oxidation, respectively; corresponding maximum velocity (Vmax) values were 119 and 11.7 pmol/mg protein per minute, respectively. These data indicate that the C-2 and C-16 oxidations of estradiol take place in cultured avian hepatocytes and that the extent of metabolism at these positions on the hormone molecule can be altered by chemicals, such as drugs and polycyclic aromatic hydrocarbons, which induce distinctive species of cytochrome P-450 in the liver.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1420
page 1420
icon of scanned page 1421
page 1421
icon of scanned page 1422
page 1422
icon of scanned page 1423
page 1423
icon of scanned page 1424
page 1424
icon of scanned page 1425
page 1425
icon of scanned page 1426
page 1426
Version history
  • Version 1 (October 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts