A type III hyperlipoproteinemic subject having the apolipoprotein E (apo E) phenotype E3/2 was identified. From isoelectric focusing experiments in conjunction with cysteamine treatment (a method that measures cysteine content in apo E), the E2 isoform of this subject was determined to have only one cysteine residue, in contrast to all previously studied E2 apoproteins, which had two cysteines. This single cysteine was shown to be at residue 112, the same site at which it occurs in apo E3. From amino acid and sequence analyses, it was determined that this apo E2 differed from apo E3 by the occurrence of glutamine rather than lysine at residue 146. When phospholipid X protein recombinants of the subject's isolated E3 and E2 isoforms were tested for their ability to bind to the human fibroblast apo-B,E receptor, it was found that the E3 bound normally (compared with an apo E3 control) but that the E2 had defective binding (approximately 40% of normal). Although they contained E3 as well as E2, the beta-very low density lipoproteins (beta-VLDL) from this subject were very similar in character to the beta-VLDL from an E2/2 type III hyperlipoproteinemic subject; similar subfractions could be obtained from each subject and were shown to have a similar ability to stimulate cholesteryl ester accumulation in mouse peritoneal macrophages. The new apo E2 variant has also been detected in a second type III hyperlipoproteinemic subject.
S C Rall Jr, K H Weisgraber, T L Innerarity, T P Bersot, R W Mahley, C B Blum
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 181 | 3 |
84 | 28 | |
Scanned page | 397 | 41 |
Citation downloads | 38 | 0 |
Totals | 700 | 72 |
Total Views | 772 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.