Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (23)

Advertisement

Research Article Free access | 10.1172/JCI110956

Cytochrome a,a3 reoxidation. Early indicator of metabolic recovery from hemorrhagic shock in rats.

K Kariman, F F Jöbsis, and H A Saltzman

Find articles by Kariman, K. in: PubMed | Google Scholar

Find articles by Jöbsis, F. in: PubMed | Google Scholar

Find articles by Saltzman, H. in: PubMed | Google Scholar

Published July 1, 1983 - More info

Published in Volume 72, Issue 1 on July 1, 1983
J Clin Invest. 1983;72(1):180–191. https://doi.org/10.1172/JCI110956.
© 1983 The American Society for Clinical Investigation
Published July 1, 1983 - Version history
View PDF
Abstract

To assess the metabolic recovery of mitochondria after injury, we have monitored, in vivo and noninvasively, changes in the redox state of cytochrome (cyt) a,a3 in 35 rats after tissue hypoxia induced by rapid exsanguination to a mean arterial pressure of 30-35 mmHg. This level of mean arterial pressure was maintained for a shorter period of time in group I (n = 17) and a longer period of time in group II (n = 18), then the shed blood was returned by infusion. The surviving animals were observed for 2 more h before terminating the experiments. During exsanguination, reinfusion and recovery intervals brain tissue parameters of blood oxygenation, relative blood volume, and cyt a,a3 redox state were monitored continuously by spectrophotometry through the closed skull and intact skin. Group I had a high survival rate while group II had a very low survival rate. In both groups, with the onset of hypotension, there was a prompt rapid shift, followed by a slow continued progressive shift, of cyt a,a3 toward a more reduced state. The extent of recovery of cyt a,a3 following reinfusion was different in each group. In group I there was a rapid reoxidation of cyt a,a3 to a level above the base line (16 +/- 12%, mean +/- SEM). In contrast, the extent of reoxidation of cyt a,a3 in group II was significantly lower and stayed 31 +/- 6% below the base-line level. To further evaluate the mechanisms responsible for these observations, another related experiment was performed. 12 rats were subjected to shock and resuscitation as outlined for groups I and II. After death or killing of the animal, we measured, in vitro, oxygen consumption of cerebral cortical slices. Oxygen consumption of cortical tissue slices in subgroup I was significantly higher than in subgroup II. We conclude that, under these experimental conditions, the oxidative response of cyt a,a3 correlates closely with survival or death in the two groups. If in group I animals the greater oxidation of cyt a,a3, in vivo after resuscitation, reflects greater oxygen utilization, as is suggested by the in vitro observations in subgroup I, then we may be observing a useful adaptive response to tissue injury leading to preserved organ function and enhanced survival. Therefore, noninvasively measured cyt a,a3 redox state, reflecting intracellular metabolic activity, seems to indicate both the overall cerebral cellular response to injury and the likelihood of survival.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 180
page 180
icon of scanned page 181
page 181
icon of scanned page 182
page 182
icon of scanned page 183
page 183
icon of scanned page 184
page 184
icon of scanned page 185
page 185
icon of scanned page 186
page 186
icon of scanned page 187
page 187
icon of scanned page 188
page 188
icon of scanned page 189
page 189
icon of scanned page 190
page 190
icon of scanned page 191
page 191
Version history
  • Version 1 (July 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (23)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts