Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Sympathoadrenal responses to acute and chronic hypoxia in the rat.
T S Johnson, … , J B Young, L Landsberg
T S Johnson, … , J B Young, L Landsberg
Published May 1, 1983
Citation Information: J Clin Invest. 1983;71(5):1263-1272. https://doi.org/10.1172/JCI110876.
View: Text | PDF
Research Article

Sympathoadrenal responses to acute and chronic hypoxia in the rat.

  • Text
  • PDF
Abstract

The sympathoadrenal responses to acute and chronic hypoxic exposure at 10.5 and 7.5% oxygen were determined in the rat. Cardiac norepinephrine (NE) turnover was used to assess sympathetic nervous system (SNS) activity, and urinary excretion of epinephrine (E) was measured as an index of adrenal medullary activity. The responses of the adrenal medulla and SNS were distinct and dependent upon the degree and duration of hypoxic exposure. Chronic hypoxia at 10.5% oxygen increased cardiac NE turnover by 130% after 3, 7, and 14 d of hypoxic exposure. Urinary excretion of NE was similarly increased over this time interval, while urinary E excretion was marginally elevated. In contrast, acute exposure to moderate hypoxia at 10.5% oxygen was not associated with an increase in SNS activity; in fact, decreased SNS activity was suggested by diminished cardiac NE turnover and urinary NE excretion over the first 12 h of hypoxic exposure, and by a rebound increase in NE turnover after reexposure to normal oxygen tension. Adrenal medullary activity, on the other hand, increased substantially during acute exposure to moderate hypoxia (2-fold increase in urinary E excretion) and severe hypoxia (greater than 10-fold). In distinction to the lack of effect of acute hypoxic exposure (10.5% oxygen), the SNS was markedly stimulated during the first day of hypoxia exposure at 7.5% oxygen, an increase that was sustained throughout at least 7 d at 7.5% oxygen. These results demonstrate that chronic exposure to moderate and severe hypoxia increases the activity of the SNS and adrenal medulla, the effect being greater in severe hypoxic exposure. The response to acute hypoxic exposure is more complicated; during the first 12 h of exposure at 10.5% oxygen, the SNS is not stimulated and appears to be restrained, while adrenal medullary activity is enhanced. Acute exposure to a more severe degree of hypoxia (7.5% oxygen), however, is associated with stimulation of both the SNS and adrenal medulla.

Authors

T S Johnson, J B Young, L Landsberg

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 155 3
PDF 49 13
Scanned page 312 1
Citation downloads 38 0
Totals 554 17
Total Views 571
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts