Since unstable hemoglobins have been considered a source of reactive oxygen radicals, and oxidative membrane damage a prehemolytic event, we examined the erythrocyte membranes of six patients (three splenectomized) with hemoglobin Köln disease. In the hydrogen peroxide stress test, the patients' erythrocytes generated more than twice the malonyldialdehyde (a lipid peroxidative product) than control erythrocytes. Fluorescence spectra of lipid extracts of the patients' erythrocytes showed an excitation maximum at 400 nm and an emission maximum of 460 nm, characteristic of malonyldialdehyde lipid adducts. Two types of membrane polypeptide aggregates were found in the erythrocytes of the splenectomized patients. The first, which were dissociable by treatment with mercaptoethanol, contained disulfide-linked spectrin, band 3 and globin. The second, not dissociable by mercaptoethanol, had an amino acid composition similar to that of erythrocyte membranes and spectrin (unlike globin) and like that of aggregates produced by the action of malonyldialdehyde on normal erythrocyte membranes. Atomic absorption spectroscopy of hemoglobin Köln erythrocytes showed no increase in calcium content implying that these cross-links were not due to calcium-stimulated transglutaminase. Using a micropipette technique, we demonstrated that erythrocytes containing membrane aggregates from splenectomized patients were less deformable while aggregate-free erythrocytes from non-splenectomized patients had normal deformability. We conclude that the erythrocyte membranes in hemoglobin Köln disease show evidence of lipid peroxidation with production of malonyldialdehyde, and that the nondissociable membrane aggregates formed in this disease are likely cross-linked by malonyldialdehyde. Because the erythrocytes containing membrane aggregates from splenectomized patients with unstable hemoglobin disease show decreased membrane deformability, we hypothesize that this abnormality results in premature erythrocyte destruction in vivo.
T P Flynn, D W Allen, G J Johnson, J G White
Usage data is cumulative from June 2024 through June 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 152 | 7 |
59 | 20 | |
Figure | 0 | 2 |
Scanned page | 322 | 4 |
Citation downloads | 43 | 0 |
Totals | 576 | 33 |
Total Views | 609 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.