Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 9

See more details

Referenced in 3 patents
Referenced in 1 clinical guideline sources
19 readers on Mendeley
  • Article usage
  • Citations to this article (86)

Advertisement

Research Article Free access | 10.1172/JCI110856

Characterization of glycosylated hemoglobins. Relevance to monitoring of diabetic control and analysis of other proteins.

R L Garlick, J S Mazer, P J Higgins, and H F Bunn

Find articles by Garlick, R. in: JCI | PubMed | Google Scholar

Find articles by Mazer, J. in: JCI | PubMed | Google Scholar

Find articles by Higgins, P. in: JCI | PubMed | Google Scholar

Find articles by Bunn, H. in: JCI | PubMed | Google Scholar

Published May 1, 1983 - More info

Published in Volume 71, Issue 5 on May 1, 1983
J Clin Invest. 1983;71(5):1062–1072. https://doi.org/10.1172/JCI110856.
© 1983 The American Society for Clinical Investigation
Published May 1, 1983 - Version history
View PDF
Abstract

Boronate affinity chromatography and ion exchange chromatography were used to measure the levels of glycosylated hemoglobins in normal and diabetic hemolysates, as well as the distribution of glucose adducts on alpha-NH2-valine and epsilon-NH2-lysine residues. When analyzed by ion exchange chromatography on BioRex 70 resin, the Hb Alc peak comprised 4.4 +/- 0.6% of 15 normal hemolysates and 9.1 +/- 2.1% of 15 diabetic hemolysates. The "Hb Alc" was rechromatographed on GlycoGel B boronate affinity resin that binds vicinal hydroxyl groups of covalently linked sugars. Only 70 +/- 5% of the hemoglobin adhered to the resin. Analysis by the thiobarbituric acid colorimetric test confirmed that the affinity resin effectively separated glycosylated from nonglycosylated hemoglobin. When corrected for nonglycosylated contaminants, the mean level of Hb Alc in normal hemolysates was 2.9 +/- 0.4%, a value considerably lower than those previously reported. In addition to Hb Alc, 5.2 +/- 0.5% of the remaining hemoglobin (Hb Ao) was glycosylated. In diabetics, glycosylated Ao was increased in parallel with Hb Alc. After reduction with [3H]borohydride and acid hydrolysis, glycosylated amino acids were first purified on Affi-Gel boronate affinity resin and then analyzed by ion exchange chromatography. The glucose adducts on Hb Ao were distributed as follows: alpha-chain N-terminal valine, 14%; alpha-chain lysines, 40%; beta-chain lysines, 46%. This study has revealed several pitfalls in the analysis of nonenzymatically glycosylated proteins. Peaks isolated by ion exchange chromatography or electrophoresis are likely to be contaminated by nonglycosylated proteins. Furthermore, both the thiobarbituric acid test and [3H]borohydride reduction show variable reactivity depending upon the site of the ketoamine-linked glucose.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1062
page 1062
icon of scanned page 1063
page 1063
icon of scanned page 1064
page 1064
icon of scanned page 1065
page 1065
icon of scanned page 1066
page 1066
icon of scanned page 1067
page 1067
icon of scanned page 1068
page 1068
icon of scanned page 1069
page 1069
icon of scanned page 1070
page 1070
icon of scanned page 1071
page 1071
icon of scanned page 1072
page 1072
Version history
  • Version 1 (May 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 9
  • Article usage
  • Citations to this article (86)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 3 patents
Referenced in 1 clinical guideline sources
19 readers on Mendeley
See more details