Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 1

See more details

Posted by 1 X users
2 readers on Mendeley
  • Article usage
  • Citations to this article (46)

Advertisement

Research Article Free access | 10.1172/JCI110758

Two types of dysfunctional eighth component of complement (C8) molecules in C8 deficiency in man. Reconstitution of normal C8 from the mixture of two abnormal C8 molecules.

F Tedesco, P Densen, M A Villa, B H Petersen, and G Sirchia

Find articles by Tedesco, F. in: JCI | PubMed | Google Scholar

Find articles by Densen, P. in: JCI | PubMed | Google Scholar

Find articles by Villa, M. in: JCI | PubMed | Google Scholar

Find articles by Petersen, B. in: JCI | PubMed | Google Scholar

Find articles by Sirchia, G. in: JCI | PubMed | Google Scholar

Published February 1, 1983 - More info

Published in Volume 71, Issue 2 on February 1, 1983
J Clin Invest. 1983;71(2):183–191. https://doi.org/10.1172/JCI110758.
© 1983 The American Society for Clinical Investigation
Published February 1, 1983 - Version history
View PDF
Abstract

Restoration of hemolytic activity was examined in sera from seven unrelated eighth component of complement (C8)-deficient subjects. The sera fell into two groups, depending on whether hemolytic activity was restored by the addition of the beta-chain (group 1) or the alpha-gamma-subunit (group 2) purified from normal human C8. Antigenic analysis of these sera by double-immunodiffusion using anti-human C8 confirmed previous findings of a dysfunctional C8 in the four sera of group 1 and established the presence of a different dysfunctional C8 in one of the sera of group 2 when tested at a high concentration. Further characterization of the dysfunctional C8 molecules in the two sera by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that group 1 sera were missing the beta-subunit and group 2 sera were missing the alpha-gamma-subunit of the C8 molecule. Sera from either of these two groups alone did not produce hemolysis in hemolytic plates containing sheep erythrocytes coated with antibody and complement components up to C7 (EAC1-7) and C9. When sera from the two groups were added to adjacent wells in the hemolytic plates, a zone of hemolysis developed between the wells. The contribution of C8 alpha-gamma from the sera of group 1 and of C8 beta from those of group 2 to the lysis of EAC1-7 in the presence of C9 was confirmed by the inhibitory effect of specific antibodies against the two C8 subunits. In experiments in which hemolytic activity was reconstituted by mixing sera from group 1 with sera from group 2, the serum source of C8 beta (group 2) was the limiting reagent. The dysfunctional C8 molecule in this serum was able to bind to EAC1-7. Chromatographic analysis demonstrated that the generation of hemolytic activity in the mixture of the two sera resulted from the reconstitution of the C8 molecule rather than the sequential action of the two C8 subunits.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 183
page 183
icon of scanned page 184
page 184
icon of scanned page 185
page 185
icon of scanned page 186
page 186
icon of scanned page 187
page 187
icon of scanned page 188
page 188
icon of scanned page 189
page 189
icon of scanned page 190
page 190
icon of scanned page 191
page 191
Version history
  • Version 1 (February 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 1
  • Article usage
  • Citations to this article (46)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
2 readers on Mendeley
See more details