Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110698

Biosynthesis of immunoreactive somatostatin by hypothalamic neurons in culture.

H H Zingg and Y C Patel

Find articles by Zingg, H. in: JCI | PubMed | Google Scholar

Find articles by Patel, Y. in: JCI | PubMed | Google Scholar

Published November 1, 1982 - More info

Published in Volume 70, Issue 5 on November 1, 1982
J Clin Invest. 1982;70(5):1101–1109. https://doi.org/10.1172/JCI110698.
© 1982 The American Society for Clinical Investigation
Published November 1, 1982 - Version history
View PDF
Abstract

The neuronal biosynthesis of somatostatin-like immunoreactivity (SLI) was investigated using mechanically dispersed neonatal rat hypothalamic cells kept in culture for up to 6 wk. Immunohistochemically, SLI was specifically localized to a small subpopulation of parvicellular neurons and their cell processes. By radioimmunoassay the cellular SLI content declined steadily during the first 2 wk in culture (nadir value of 60 fmol/dish at day 15) but then increased progressively to reach a maximum value of 381 fmol/dish at day 46. Gel chromatographic analysis showed this immunoreactivity to consist of forms corresponding to tetradecapeptide somatostatin (S-14), somatostatin-28 (S-28), and a 15,000-mol-wt molecule. After incubation of the cells with [3H]phenylalanine, the cellular extracts, purified by adsorption to C18 silica, contained material that bound specifically to an immobilized antisomatostatin antibody. Analysis by gel chromatography and high performance liquid chromatography of the specifically bound label provided evidence for the presence of labeled S-14, S-28, and the 15,000-mol-wt molecule. Pulse-chase experiments (20-min pulse, 20-min chase) demonstrated a transfer of radioactivity from the 15,000-mol-wt form to material corresponding to S-14 as well as to S-28. These studies demonstrate that cultured hypothalamic neurons are capable of synthesizing three somatostatin-like peptides (15,000-mol-wt SLI, S-28, S-14), one of which (15,000-mol-wt SLI) serve as a biosynthetic precursor for both S-28 and S-14. This in vitro system should provide a powerful tool for further investigation of the biosynthesis and regulation of biosynthesis of somatostatin in the hypothalamus.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1101
page 1101
icon of scanned page 1102
page 1102
icon of scanned page 1103
page 1103
icon of scanned page 1104
page 1104
icon of scanned page 1105
page 1105
icon of scanned page 1106
page 1106
icon of scanned page 1107
page 1107
icon of scanned page 1108
page 1108
icon of scanned page 1109
page 1109
Version history
  • Version 1 (November 1, 1982): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts