Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Human Alveolar Macrophage Growth Factor for Fibroblasts: REGULATION AND PARTIAL CHARACTERIZATION
Peter B. Bitterman, … , Gary W. Hunninghake, Ronald G. Crystal
Peter B. Bitterman, … , Gary W. Hunninghake, Ronald G. Crystal
Published October 1, 1982
Citation Information: J Clin Invest. 1982;70(4):806-822. https://doi.org/10.1172/JCI110677.
View: Text | PDF

Human Alveolar Macrophage Growth Factor for Fibroblasts: REGULATION AND PARTIAL CHARACTERIZATION

  • Text
  • PDF
Abstract

The number of fibroblasts composing the alveolar structures in controlled within narrow limits by a strictly modulated rate of fibroblast replication. One possible source of growth-modulating signals for alveolar fibroblasts is the alveolar macrophage, a member of the mononuclear phagocyte family of cells, which collectively are known to be important sources of growth factors for a variety of target cells. To evaluate the role of alveolar macrophages in the control of alveolar fibroblast replication, macrophages from normal individuals obtained by bronchoalveolar lavage were maintained in suspension culture with and without added stimuli, and supernates were evaluated for fibroblast growth-promoting effect. Supernates from unstimulated macrophages contained no growth factor activity. In marked contrast, supernates from macrophages stimulated with particulates and immune complexes contained a growth factor that caused a significant increase in fibroblast replication rate. Maximum growth factor activity was observed 3-4 h after macrophage stimulation, at a concentration of 1-2 × 106 macrophages/ml. The alveolar macrophagederived growth factor eluted from DEAE-cellulose at 0.27 M NaCl at neutral pH had an apparent molecular weight of 18,000, and appeared to be distinct from other characterized growth factors. The alveolar macrophage-derived growth factor stimulated lung fibroblast DNA synthesis within 12 h, with cell division apparent within 48 h. In serum-free culture, the alveolar macrophage-derived growth factor by itself did not promote fibroblast replication, but rather acted as a progression factor causing a synergistic increase in fibroblast replication rate in the presence of competence factors such as fibroblast growth factor or platelet-derived growth factor. These studies suggest that when stimulated, human alveolar macrophages may modulate, in part, the replication rate of alveolar fibroblasts by releasing a growth factor within the alveolar microenvironment.

Authors

Peter B. Bitterman, Stephen I. Rennard, Gary W. Hunninghake, Ronald G. Crystal

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 250 4
PDF 48 7
Scanned page 580 5
Citation downloads 54 0
Totals 932 16
Total Views 948
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts