Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 1 patents
3 readers on Mendeley
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI110605

Elevation of Plasma Neurotensinlike Immunoreactivity after a Meal: CHARACTERIZATION OF THE ELEVATED COMPONENTS

Robert A. Hammer, Robert E. Carraway, and Susan E. Leeman

Department of Physiology, University of Massachusetts Medical Center, Worcester, Massachusetts 01605

Department of Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts 01605

Find articles by Hammer, R. in: JCI | PubMed | Google Scholar

Department of Physiology, University of Massachusetts Medical Center, Worcester, Massachusetts 01605

Department of Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts 01605

Find articles by Carraway, R. in: JCI | PubMed | Google Scholar

Department of Physiology, University of Massachusetts Medical Center, Worcester, Massachusetts 01605

Department of Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts 01605

Find articles by Leeman, S. in: JCI | PubMed | Google Scholar

Published July 1, 1982 - More info

Published in Volume 70, Issue 1 on July 1, 1982
J Clin Invest. 1982;70(1):74–81. https://doi.org/10.1172/JCI110605.
© 1982 The American Society for Clinical Investigation
Published July 1, 1982 - Version history
View PDF
Abstract

The detection of an elevation in neurotensinlike immunoreactivity in peripheral plasma for several hours after a meal has been confirmed and shown to be primarily due to the presence of aminoterminal fragments of neurotensin (NT) rather than to NT itself. We have developed a procedure to separate and characterize these N-terminal cross-reacting substances, and to estimate the contributions of these constitutents to plasma neurotensinlike immunoreactivity. Gel chromatography of pooled plasma extracts on Sephadex G-25 followed by reverse-phase high pressure liquid chromatography indicated that peptides coeluting with NT and its N-terminal partial sequences NT(1-8) and NT(1-11) were present in plasma. Comparison of plasmas collected before and 1 h after a defined meal, in five experiments, demonstrated no change in C-terminal immunoreactivity and an 8- to 10-fold rise in N-terminal immunoreactivity. Chromatographic analysis of pooled pre- and postmeal plasma in four experiments showed that essentially all of this elevation in neurotensinlike immunoreactivity measured with an N-terminal directed antiserum was due to increases in NT(1-8) and NT(1-11), while NT itself, measured using a C-terminal directed antiserum, did not increase appreciably in peripheral plasma 1 h after the meal. Generation of tritiated substances with the same elution times as NT(1-8) and NT(1-11) did occur after incubation of [3H]NT with whole blood in vitro, providing supporting evidence that these fragments are metabolites of NT. The marked elevation in the circulating levels of these fragments reflects that an increased secretion of NT occurred in response to the test meal. The secreted NT may have acted as a hormone before it was metabolized, or it may only have had a local (paracrine) effect.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 74
page 74
icon of scanned page 75
page 75
icon of scanned page 76
page 76
icon of scanned page 77
page 77
icon of scanned page 78
page 78
icon of scanned page 79
page 79
icon of scanned page 80
page 80
icon of scanned page 81
page 81
Version history
  • Version 1 (July 1, 1982): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
3 readers on Mendeley
See more details