Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Metabolic Requirement for Inorganic Phosphate by the Rabbit Proximal Tubule: EVIDENCE FOR A CRABTREE EFFECT
Peter C. Brazy, … , Lazaro J. Mandel, Vincent W. Dennis
Peter C. Brazy, … , Lazaro J. Mandel, Vincent W. Dennis
Published July 1, 1982
Citation Information: J Clin Invest. 1982;70(1):53-62. https://doi.org/10.1172/JCI110603.
View: Text | PDF

Metabolic Requirement for Inorganic Phosphate by the Rabbit Proximal Tubule: EVIDENCE FOR A CRABTREE EFFECT

  • Text
  • PDF
Abstract

These studies examine the effects of acute changes in the availability of inorganic phosphate on the function of isolated proximal renal tubules from rabbit kidney. We removed phosphate from the extracellular fluids and measured fluid absorption rates in isolated perfused tubules and oxygen consumption rates in suspensions of cortical tubules. In proximal convoluted tubules, the selective removal of phosphate from the luminal fluid reduced fluid absorption rates from 1.11±0.12 to −0.01±0.08 nl/mm · min. This effect on fluid absorption was dependent on the presence of glucose transport and metabolism. The addition of phlorizin to the phosphate-free luminal fluid preserved fluid absorption rates (1.12±0.12 nl/mm · min) as did the substitution of nonmetabolized α-methyl d-glucopyranoside for glucose (1.05±0.21 nl/mm · min) or the addition of 2-deoxyglucose, an inhibitor of glycolysis, to the bathing medium (1.01±0.15 nl/mm · min). There was no effect on fluid absorption if phosphate was removed from the bath only. Additionally, removal of phosphate from the luminal fluid of proximal straight rather than convoluted tubules had no effect on fluid absorption rates. Oxygen consumption rates in suspensions of cortical tubules were reduced from 18.9±0.6 to 10.6±0.6 nmol O2/mg tubular protein · min by the removal of phosphate from the medium. This inhibition was prevented by the substitution of α-methyl d-glucopyranoside for glucose in the phosphate-free medium. The data indicate that under certain conditions, proximal convoluted tubules require the presence of phosphate in the luminal fluid to preserve tubular function. In the absence of intraluminal phosphate, glucose metabolism causes a reduction in both oxidative metabolism and fluid absorption. This response is analogous to the Crabtree effect and suggests limitations on the intracellular availability of inorganic phosphate.

Authors

Peter C. Brazy, Steven R. Gullans, Lazaro J. Mandel, Vincent W. Dennis

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 107 1
PDF 43 6
Scanned page 319 0
Citation downloads 41 0
Totals 510 7
Total Views 517
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts