Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (52)

Advertisement

Research Article Free access | 10.1172/JCI110583

Differential Effects of Insulin on Splanchnic and Peripheral Glucose Disposal after an Intravenous Glucose Load in Man

Luigi Saccà, Marco Cicala, Bruno Trimarco, Biagio Ungaro, and Carlo Vigorito

Institute of Medical Pathology, Second School of Medicine, University of Naples, Italy

Find articles by Saccà, L. in: JCI | PubMed | Google Scholar

Institute of Medical Pathology, Second School of Medicine, University of Naples, Italy

Find articles by Cicala, M. in: JCI | PubMed | Google Scholar

Institute of Medical Pathology, Second School of Medicine, University of Naples, Italy

Find articles by Trimarco, B. in: JCI | PubMed | Google Scholar

Institute of Medical Pathology, Second School of Medicine, University of Naples, Italy

Find articles by Ungaro, B. in: JCI | PubMed | Google Scholar

Institute of Medical Pathology, Second School of Medicine, University of Naples, Italy

Find articles by Vigorito, C. in: JCI | PubMed | Google Scholar

Published July 1, 1982 - More info

Published in Volume 70, Issue 1 on July 1, 1982
J Clin Invest. 1982;70(1):117–126. https://doi.org/10.1172/JCI110583.
© 1982 The American Society for Clinical Investigation
Published July 1, 1982 - Version history
View PDF
Abstract

The present study was designed to investigate the mechanisms by which insulin regulates the disposal of an intravenous glucose load in man. A combined tracer-hepatic vein catheter technique was used to quantitate directly the components of net splanchnic glucose balance (NSGB), i.e., splanchnic glucose uptake and hepatic glucose output, and peripheral (extrasplanchnic) glucose uptake. Four different protocols were performed: (a) intravenous infusion of glucose alone (6.5 mg kg−1 min−1) for 90 min (control group); (b) glucose plus somatostatin (0.6 mg/h) and glucagon (0.8 ng kg−1 min−1; (c) glucose plus somatostatin, glucagon, and insulin (0.15 mU kg−1 min−1); and (d) glucose plus somatostatin, glucagon, and insulin (0.4 m U kg−1 min−1). In groups 2-4, arterial blood glucose was raised to comparable levels to those of controls (≃170 mg/dl) by a variable glucose infusion. In the control group, plasma insulin levels reached 40 μU/ml at 90 min. NSGB switched from a net output of 1.71±0.13 to a net uptake of 1.5-1.6 mg kg−1 min−1 due to a 90-95% suppression of hepatic glucose output (P < 0.01) and a 105-130% elevation of splanchnic glucose uptake (from 0.78±0.13 to 1.6-1.8 mg kg−1 min−1; P < 0.01). Peripheral glucose uptake rose by 150-160% (P < 0.01). In group 2, plasma insulin fell to <5 μU/ml. Net splanchnic glucose output initially rose twofold but later returned to basal values. This response was entirely accounted for by similar changes in hepatic glucose output since splanchnic glucose uptake remained totally unchanged in spite of hyperglycemia. In contrast, peripheral glucose uptake rose consistently by 100% (P < 0.01) despite insulin deficiency. In an additional group of experiments, glucose metabolism by the forearm muscle tissue was quantitated during identical conditions to those of group 2 (hyperglycemia plus insulin deficiency). Both the arterial-deep venous blood glucose difference and forearm glucose uptake increased markedly by 300-400% (P < 0.05 - <0.01). In group 3, plasma insulin was maintained at near-basal, peripheral levels (12-14 μU/ml). Hepatic glucose output decreased slightly by 35-40% (P < 0.05) while splanchnic glucose uptake remained unchanged. Consequently, the net glucose overproduction seen in group 2 was totally prevented although NSGB still remained as a net output. In group 4, peripheral insulin levels were similar to those of the control group (35-40 μU/ml). The suppression of hepatic glucose output was more pronounced (60-65%) and splanchnic glucose uptake rose consistently by 65% (P < 0.01). Consequently, NSGB did not remain as a net output but eventually switched to a small uptake (0.3 mg kg−1 min−1). Peripheral glucose uptake rose to the same extent as in controls.

It is concluded that: (a) the suppressive effect of hyperglycemia on hepatic glucose output is strictly dependent on the degree of hepatic insulinization; (b) insulin plays an essential role in promoting splanchnic glucose uptake after an intravenous glucose load whereas hyperglycemia per se is totally unable to activate this process; (c) peripheral glucose uptake is markedly stimulated by hyperglycemia even in the face of insulin deficiency. Direct evidence also demonstrates that the skeletal muscle is involved in this response. Our data, thus, indicate that insulin rather than hyperglycemia regulates splanchnic glucose disposal in man. On the other hand, hyperglycemia per se appears to be an important regulator of glucose disposal by peripheral tissues.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 117
page 117
icon of scanned page 118
page 118
icon of scanned page 119
page 119
icon of scanned page 120
page 120
icon of scanned page 121
page 121
icon of scanned page 122
page 122
icon of scanned page 123
page 123
icon of scanned page 124
page 124
icon of scanned page 125
page 125
icon of scanned page 126
page 126
Version history
  • Version 1 (July 1, 1982): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (52)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts