Papillary and surface micropuncture was used to assess the effects of a chronic metabolic acidosis on the renal tubular handling of ammonium by surface nephrons, juxtamedullary nephrons, and the terminal segment of collecting duct. Rats chronically fed ammonium chloride had an expected decline in arterial pH and bicarbonate concentration associated with a doubling in the amount of ammonium excreted and a decline in urine pH. The glomerular filtration rate and absolute delivery of water and sodium to micropuncture sites of surface and deep nephrons was not measurably altered. Ammonium delivery to the end of the proximal tubule increased from 853±102% to 1,197±142% (SE) of the filtered load of ammonium after the induction of metabolic acidosis. This increase was due to a rise in tubular fluid ammonium content from 2.31±0.23 to 4.06±0.28 mM/liter. After the induction of acidosis, absolute and fractional delivery of ammonium ion to the end of the distal tubule was less than to the end of the accessible portion of the proximal tubule. These findings indicate that ammonium is lost in the intervening segment.
John Buerkert, Daniel Martin, David Trigg
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 117 | 0 |
51 | 14 | |
Scanned page | 446 | 22 |
Citation downloads | 63 | 0 |
Totals | 677 | 36 |
Total Views | 713 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.