Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI110577

Human Skin Collagenase in Recessive Dystrophic Epidermolysis Bullosa: PURIFICATION OF A MUTANT ENZYME FROM FIBROBLAST CULTURES

George P. Stricklin, Howard G. Welgus, and Eugene A. Bauer

Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Stricklin, G. in: JCI | PubMed | Google Scholar

Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Welgus, H. in: JCI | PubMed | Google Scholar

Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Bauer, E. in: JCI | PubMed | Google Scholar

Published June 1, 1982 - More info

Published in Volume 69, Issue 6 on June 1, 1982
J Clin Invest. 1982;69(6):1373–1383. https://doi.org/10.1172/JCI110577.
© 1982 The American Society for Clinical Investigation
Published June 1, 1982 - Version history
View PDF
Abstract

Recessive dystrophic epidermolysis bullosa, a genodermatosis characterized by dermolytic blister formation in response to minor trauma, is characterized by an incresaed collagenase synthesis by skin fibroblasts in culture. Since preliminary studies of partially purified recessive dystrophic epidermolysis bullosa collagenase suggested that the protein itself was aberrant, efforts were made to purify this enzyme to homogeneity, so that detailed biochemical and immunologic comparisons could be made with normal human skin fibroblast collagenase. Recessive dystrophic epidermolysis bullosa skin fibroblasts obtained from a patient documented to have increased synthesis of the enzyme were grown in large scale tissue culture and both serum-free and serum-containing medium collected as a source of collagenase. The recessive dystrophic epidermolysis bullosa collagenase was purified to electrophoretic homogeneity using a combination of salt precipitation, ion-exchange, and gel-filtration chromatography. In contrast to the normal enzyme, the recessive dystrophic epidermolysis bullosa collagenase bound to carboxymethyl-cellulose at Ca2+ concentrations at least 10 times higher than those used with the normal enzyme. Additionally, this enzyme was significantly more labile to chromatographic manipulations, particularly when serum-free medium was used. However, rapid purification from serum-containing medium yielded a preparation enzymatically equivalent to normal human skin collagenase. Like the normal enzyme, the recessive dystrophic epidermolysis bullosa collagenase was secreted as a set of two closely related zymogens of ∼60,000 and ∼55,000 daltons that could be activated by trypsin to form enzymically active species of ∼50,000 and ∼45,000 daltons, respectively. Amino acid analysis suggested slight variations between the normal and recessive dystrophic epidermolysis bullosa collagenases. Cyanogen bromide digests demonstrated peptides unique to the enzyme from each source. The recessive dystrophic epidermolysis bullosa proenzyme was significantly more thermolabile at 60°C than the normal, a finding that correlated with an approximate fourfold decrease in the affinity of the mutant enzyme for Ca2+, a known activator and stabilizer of human skin collagenase. Aside from the altered affinity for this metal cofactor, kinetic analysis of the structurally altered recessive dystrophic epidermolysis bullosa collagenase revealed that its reaction rates and substrate specificity for human collagen types I-V were identical to those for the normal enzyme. Likewise, enzymes from both sources displayed identical energies of activation and deuterium isotope effects. Antisera were raised to the normal and putatively mutant procollagenases respectively, and, although they displayed a reaction of identity in double diffusion analysis, immunologic differences were present in enzyme inhibition and quantitative precipitation studies. These studies indicate that recessive dystrophic epidermolysis bullosa is characterized by the increased synthesis of an enzymically normal, but structurally aberrant, collagenase.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1373
page 1373
icon of scanned page 1374
page 1374
icon of scanned page 1375
page 1375
icon of scanned page 1376
page 1376
icon of scanned page 1377
page 1377
icon of scanned page 1378
page 1378
icon of scanned page 1379
page 1379
icon of scanned page 1380
page 1380
icon of scanned page 1381
page 1381
icon of scanned page 1382
page 1382
icon of scanned page 1383
page 1383
Version history
  • Version 1 (June 1, 1982): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts